
  

GlobAlbedo 

Author:  GlobAlbedo Consortium 

 
TITLE: GlobAlbedo Algorithm Theoretical Basis Document 

 
Version 4.12 

  
Document Number:  GlobAlbedo_Albedo_ATBD_V4_12 Date 7/07/2013 

 
 
 

           Distribution: 
 

ESA O. Leonard X 

 S. Pinnock X 

   

University College London J-P. Muller X 

 T. Kennedy X 

 P. Lewis X 

 S. Kharbouche X 

 D. Fisher X 

   

Swansea P. North X 

   

Free University of Berlin J. Fisher X 

 R. Preusker X 

   

Brockmann Consult C. Brockmann X 

 U. Krämer X 

 O. Danne X 

 N. Fomferra X 

 
 
 

Author:    Date:    7/7/13 

Manager/Project Office    Date:   7/7/13 

PA:   Date:    

 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 2 of 313 

 
CHANGE RECORD 

 

ISSUE DATE PAGES 
CHANGED 

COMMENTS 

A 18/07/10 All new Draft 

1 09/09/10 All sections First Issue 

2 09/11/10 All sections Response to RIDs raised by Simon 
Pinnock (7/10/2010) 

2.1 26/11/10 Equation 
15 p.43 

New formulation in equation 9 now 
propagated through to Nsky terms. 

2.2 16/02/11 Equn 19b Added in information for Chi squared in 
eqn 19b and in the accumulator text. 

3.0 07/04/11 All sections Major revision, including prototype results 

3.1 06/06/2012 All Global ToC added, fAPAR material added 

4.1 20/06/2013 section 
6.1.2.3 

description of sea-ice flag added pixel and 
its albedo processing   

4.1 25/06/2013 Add section 
E 

GlobAlbedo CCN AATSR-MERIS 
Collocation 

4.11 2/07/2013 Added to 
section E 

Added section on reprojection and 
mosaicing strategy. Missing references 
added 

4.12 7/07/2013 Response 
to RIDs 

FAPAR section removed, removed Error 
sources, replaced Figure 21-1 with 
corrected equations, CCN aspects 
removed, added Future work section 

 

CONTRIBUTORS 

 

Author Names Organisation 

G. López, J.-P. Muller, D. Potts, N. Shane. 
S. Kharbouche, D. Fisher 

UCL MSSL 

P. Lewis UCL Geography 

C. Brockmann, O. Danne, O. Krueger Brockmann Consult 

A. Heckel, P. North Swansea University 

L. Guanter Freie Universität Berlin 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 3 of 313 

CONTENTS 

 

1 Introduction .................................................................................................................. 9 

1.1 Purpose and Scope of Document ........................................................................ 9 

1.2 Context ................................................................................................................... 9 

2 Applicable and Reference documents ..................................................................... 11 

2.1 Applicable documents ........................................................................................ 11 

2.2 Reference Documents ........................................................................................ 11 

2.3 Definitions and Abbreviations ........................................................................... 16 

2.3.1 Definitions ....................................................................................................... 16 

2.3.2 Spectral and directional quantities .................................................................. 16 

2.3.3 Atmospheric quantities ................................................................................... 16 

2.3.4 Reflectance-based quantities ......................................................................... 17 

2.3.5 Albedo-related quantities ................................................................................ 19 

2.4 Abbreviations ...................................................................................................... 20 

3 Algorithm overview ................................................................................................... 21 

3.1 Introduction to the problem and design philosophy ....................................... 21 

3.2 Overview of the ATBDs ...................................................................................... 25 

3.3 Pre-processing .................................................................................................... 30 

3.3.1 Pixel identification ........................................................................................... 30 

3.3.2 Aerosol retrieval .............................................................................................. 30 

3.3.3 Spectral directional reflectance retrieval ......................................................... 30 

3.3.4 Broadband conversion .................................................................................... 31 

3.3.5 Kernel-integral estimation ............................................................................... 31 

3.3.6 Data binning ................................................................................................... 31 

3.4 Optimal Estimation ............................................................................................. 31 

3.5 Post-Processing .................................................................................................. 31 

3.6 Projections and gridding .................................................................................... 33 

4 Practical considerations ........................................................................................... 33 

4.1 Processing time estimates ................................................................................. 33 

4.1.1 Pre-processing ............................................................................................... 33 

4.1.2 Optimal estimation .......................................................................................... 34 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 4 of 313 

4.1.3 Post-processing .............................................................................................. 34 

4.2 Data volume and timing estimates .................................................................... 34 

4.2.1 Input data ........................................................................................................ 34 

4.2.2 BBDR data ...................................................................................................... 35 

4.2.3 Model parameter data .................................................................................... 36 

4.2.4 Final product data ........................................................................................... 36 

5 Error budget estimates ............................................................................................. 36 

6 Assumptions and Limitations ................................................................................... 37 

7 Future Work ............................................................................................................... 37 

8 Section A: Algorithm Theoretical Basis Document – Pixel Classification ........... 40 

9 Introduction ................................................................................................................ 42 

10 Applicable and Reference documents ................................................................... 42 

10.1.1 Applicable documents................................................................................... 42 

10.1.2 Reference Documents .................................................................................. 43 

10.2 Definitions and Abbreviations ......................................................................... 43 

10.3 Definitions .......................................................................................................... 43 

10.4 Abbreviations .................................................................................................... 43 

11 Algorithms’ overview .............................................................................................. 47 

11.1 Background ....................................................................................................... 47 

11.2 Methods ............................................................................................................. 50 

11.3 Theoretical Description .................................................................................... 51 

11.4 ................................................................................................................................ 53 

11.5 Practical considerations ................................................................................... 53 

11.5.1 Overall Principles .......................................................................................... 53 

11.5.2 Probabilistic Arithmetic ................................................................................. 54 

11.5.3 Features ....................................................................................................... 55 

11.5.4 Processing Logic .......................................................................................... 63 

11.5.5 Thresholds .................................................................................................... 65 

12 Error budget estimates ........................................................................................... 66 

13 Assumptions and Limitations ................................................................................. 66 

14 References ............................................................................................................... 66 

Section B: Algorithm Theoretical Basis Document – Aerosol .................................... 80 

15 Introduction .............................................................................................................. 81 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 5 of 313 

15.1 Purpose and Scope of Document .................................................................... 81 

15.2 Context ............................................................................................................... 81 

16 Applicable and Reference documents ................................................................... 82 

16.1.1 Applicable documents................................................................................... 82 

16.1.2 Reference Documents ................................................................................... 82 

16.2 Definitions and Abbreviations ......................................................................... 82 

17 Instrument characteristics ...................................................................................... 84 

17.1 ATSR-2 and AATSR .......................................................................................... 84 

17.2 MERIS ................................................................................................................. 84 

17.3 SPOT VEGETATION .......................................................................................... 86 

18 Theoretical background for aerosol retrieval ........................................................ 87 

18.1 Aerosol optical depth and scattering models ................................................. 88 

18.2 Single-view methods ........................................................................................ 88 

18.3 Multi-temporal methods .................................................................................... 90 

18.4 Multiple view-angle (MVA) methods ................................................................ 90 

19 Algorithm overview ................................................................................................. 91 

19.1 General Overview of Scheme ........................................................................... 91 

19.2 Pre-processing .................................................................................................. 92 

19.3 Approximation of atmospheric radiative transfer .......................................... 93 

19.4 Aerosol model set ............................................................................................. 95 

19.5 Constraints on surface reflectance ................................................................. 96 

19.5.1 Multiple  View-Angle constraint ((A)ATSR) ................................................... 97 

19.5.2 Dark object method (MERIS and VGT)......................................................... 99 

19.6 Numerical inversion ........................................................................................ 100 

19.6.1 AOT retrieval .............................................................................................. 101 

19.6.2 Selection of optimal aerosol model ............................................................. 102 

19.6.3 AOT error estimate ..................................................................................... 103 

19.6.4 Interpolation of aerosol field ........................................................................ 104 

20 Practical considerations ....................................................................................... 105 

20.1.1 Summary of inputs ...................................................................................... 105 

20.1.2 Summary of products.................................................................................. 105 

20.1.3 BEAM implementation and processing efficiency ....................................... 105 

20.1.4 Comparison with AERONET stations ......................................................... 110 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 6 of 313 

21 Assumptions and Limitations ............................................................................... 112 

22 References ............................................................................................................. 113 

Section C:  GlobAlbedo Algorithm Theoretical Basis Document – BBDR ............... 121 

23 Introduction ............................................................................................................ 123 

24 Applicable and reference documents .................................................................. 124 

25 Definitions and abbreviations ............................................................................... 127 

25.1 Acronyms and Abbreviations ........................................................................ 127 

25.2 Terms and Symbols ........................................................................................ 127 

26 Algorithm Theoretical Background ...................................................................... 129 

26.1 Theoretical description ................................................................................... 129 

26.1.1 Formulation of the atmosphere-surface radiative transfer .......................... 129 

26.1.2 Atmospheric look-up tables ........................................................................ 131 

26.1.3 Instrument intercalibration .......................................................................... 136 

26.1.4 SDR and NDVI retrieval .............................................................................. 136 

26.1.5 Narrow-to-broadband conversion (BBDR retrieval) .................................... 138 

26.1.6 Estimation of uncertainties in SDR and BBDR ........................................... 142 

26.2 Processor Description .................................................................................... 147 

26.3 Assumptions and Limitations ........................................................................ 150 

27 Appendix I - Image Gallery .................................................................................... 152 

28 Appendix II – Instrument intercalibration ............................................................ 165 

Section D: Algorithm Theoretical Basis Document – Albedo retrieval ..................... 169 

29 Introduction ............................................................................................................ 171 

30 Applicable and Reference documents ................................................................. 173 

30.1.1 Applicable documents................................................................................. 173 

30.1.2 Reference Documents ................................................................................ 173 

30.2 Definitions ........................................................................................................ 177 

30.3 Abbreviations .................................................................................................. 177 

31 Mathematical and Physical Background ............................................................. 179 

31.1 Mathematical Description of albedo .............................................................. 179 

31.2 Mathematical description of atmospheric correction .................................. 183 

31.3 Modelling of spectral directional reflectance and associated integrals ..... 196 

31.4 Modelling albedo ............................................................................................. 206 

31.5 Spectral considerations ................................................................................. 210 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 7 of 313 

31.6 Parameter estimation ...................................................................................... 211 

31.6.1 Unconstrained parameter estimation .......................................................... 211 

31.6.2 Uncertainty and angular sampling .............................................................. 212 

31.6.3 Temporal smoothness constraint ................................................................ 219 

31.6.4 Negative aspects of regularisation and how to deal with them ................... 225 

31.6.5 Prior knowledge constraint ......................................................................... 227 

32 Prior Estimation ..................................................................................................... 228 

32.1 The requirement for priors ............................................................................. 228 

32.2 Generations and use of prior ......................................................................... 232 

32.2.1 Input Data ................................................................................................... 233 

32.3 Estimating mean and uncertainty in priors: theory ..................................... 234 

32.4 Estimating mean and uncertainty in priors: practice ................................... 236 

32.4.1 Analysis of estimated mean in priors .......................................................... 239 

32.4.2 Analysis of standard deviations in estimated priors .................................... 244 

32.4.3 Analysis of model parameters correlation in estimated priors ..................... 247 

32.4.4 Cross-validation exercise ............................................................................ 250 

32.4.5 Discussion and Conclusions ....................................................................... 255 

32.5 Snow ................................................................................................................ 256 

32.6 Scaling and gap filling of the prior ................................................................ 260 

32.7 Final gap filling ................................................................................................ 266 

33 Algorithm Overview ............................................................................................... 267 

33.1 General Overview of Scheme ......................................................................... 267 

33.2 Pre-processing ................................................................................................ 267 

33.2.1 Pixel identification ....................................................................................... 267 

33.2.2 Aerosol retrieval .......................................................................................... 267 

33.2.3 Spectral directional reflectance retrieval ..................................................... 268 

33.2.4 Broadband conversion ................................................................................ 268 

33.2.5 Kernel-integral estimation ........................................................................... 268 

33.2.6 Data binning ............................................................................................... 269 

33.3 Optimal parameter estimation ........................................................................ 269 

33.4 Impact of the prior in the model parameters ................................................ 270 

33.5 Albedo estimation ........................................................................................... 272 

34 Algorithm Description ........................................................................................... 274 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 8 of 313 

34.1 Introduction ..................................................................................................... 274 

34.1.1 Input data .................................................................................................... 274 

34.1.2 Output data ................................................................................................. 276 

34.2 A Data Class and methods for optimal estimation ....................................... 280 

34.2.1 Data input ................................................................................................... 282 

34.2.2 Accumulation .............................................................................................. 286 

34.3 Optimal estimation framework ....................................................................... 296 

34.4 Estimation of albedo ....................................................................................... 297 

34.4.1 Overview ..................................................................................................... 298 

34.4.2 Uncertainty ................................................................................................. 298 

34.5 Practical considerations ................................................................................. 299 

34.5.1 Data considerations .................................................................................... 299 

34.5.2 Numerical computation considerations ....................................................... 300 

34.5.3 Prototyping and Verification. ....................................................................... 301 

34.5.4 Quality Control and Diagnostics ................................................................. 306 

34.5.5 Exception Handling ..................................................................................... 306 

35 Error budget ........................................................................................................... 307 

36 Assumptions and Limitations ............................................................................... 309 

36.1 Assumptions ................................................................................................... 309 

36.2 Limitations ....................................................................................................... 311 

37 Broadband reflectance and kernel values (internal product) ............................ 312 

 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 9 of 313 

1 Introduction 

1.1 Purpose and Scope of Document  

The purpose of this document is to provide the background and theoretical justification for 
the algorithm employed to estimate albedo in the ESA GlobAlbedo product. The primary 
features of the product are: 

 It is a 15 year product covering the years 1995-2010; 

 It is a gap-free core 1 km resolution (also 5 arc-minutes (≈10km) and 30 arc-

minutes (≈50km)) gridded product over the Earth land surface; 

 It provides estimates of albedo in 3 broad wavebands (visible, shortwave infrared 

and total shortwave: 0.3-0.7μm, 0.7-3μm, 0.3-3μm); 

 It is derived primarily from estimates of surface directional spectral reflectance from 

3 (streams of) European satellite sensor data ((A)ATSR and related, SPOT 

Vegetation, and MERIS);  

 It incorporates uncertainties in the observations (and other elements of an optimal 

estimation framework) so that an uncertainty can be attributed to the final albedo 

product; 

1.2 Context 

Land surface albedo is the proportion of incident radiation over some waveband that is 
reflected from a surface. As such, it is one of the most important ‘parameters’ 
characterising the Earth’s radiative regime due to its impact on the climatic and biospheric 
processes. Knowledge of albedo is of critical importance to land surface monitoring and 
modelling, particularly in regard to considerations of climate and the biosphere. When 
albedo is used in models, it has often been specified simply as a parameter, i.e. a fixed 
number for some given land cover type. However, many years of monitoring have shown 
that it can vary very significantly both spatially and temporally. That said, being an angular 
and spectral integral, it is relatively conservative inter-annually, other than due to factors 
such as snow and possibly fire and dramatic land cover change. As particularly high 
changes in albedo occur due to the presence of absence of snow, modellers tend to 
consider these two cases separately: a snow free albedo and one with snow included.  

The definition of albedo, , is straightforward: it is the ratio of total upwelling to total 
downwelling radiation (without further qualification, over the entire solar radiation 
(shortwave) regime, practically around 350-2500 nm). Its definition limits it to the bounds 
(0,1) in the absence of emission effects. Its value lies primarily in its role in energy budget 
considerations within climate or weather prediction models, in that the proportion of 
(shortwave) radiation absorbed by the surface (and converted to heat energy or used in 
biochemical processes such as photosynthesis) is . As an example of the critical role 
of albedo in the Earth system, Ridgwell et al., (2009) consider a geo-engineering solution 
as a technological solution for reducing global warming in which they suppose bio-
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engineering to supply a +0.04 change in maximum canopy albedo (a 15-20% increase in 
albedo) across prescribed cropland areas. By examining this scenario in a GCM, they 
predict global annual average surface air temperatures to be around 0.1oC lower than with 
no change, with more extreme regional variations such as a 1oC cooling during summer 
months throughout North America and Eurasia. Another way of interpreting these results 
is that a 15 or 20% positive bias in estimates of crop albedo can have a large (especially 
regional) impact on GCM predictions of surface temperatures. We note that GCOS (2006) 
and Schaaf et al. (2009) suggest a relative accuracy of 5% (or 0.005, whichever is larger). 
The relative accuracy required in the SoW are: BHR: 10%  (or 0.005 absolute, whichever 
is larger); DHR:  20% (or 0.01, whichever is larger). The target accuracy requirements 
identified by and agreed with the GlobAlbedo users in GlobAlbedo_RB_D01_v2_0 (2010) 
are: Albedo >0.15, 20% and for Albedo <0.15, 0.015, i.e. 10% relative accuracy (or 0.015, 
whichever is larger).  

Earth surface albedo is generally split into two spectral components: visible (VIS) and near 
infrared (NIR). The main reason for this is that visible albedo is of primary importance in 
consideration of photosynthesis in vegetation canopies: the radiation absorbed in this 
region over vegetation canopies, , is in essence partitioned between that absorbed 

by the canopy (fAPAR – the faction of absorbed PAR, where PAR is ‘photosynthetically-
active radiation’, a misnomer since it is the vegetation that is active in this sense, not the 
radiation) and that absorbed by soil or non-photosynthetically active components of the 
canopy. In this argument, we assume PAR and the visible waveband to be equivalent. 
Then we can note that , i.e.  provides an upper bound estimate of 

. Another reason for splitting the shortwave albedo into (at least two) spectral 

components is that the proportion of solar radiation in these wavebands varies with 
atmospheric conditions (the main factors being aerosols at shorter wavelengths and water 
vapour at longer wavelengths). This comment gives an immediate insight into some issues 
that arise in the estimation of albedo: as it depends of atmospheric state (at the very least 
the proportion of downwelling radiation in VIS and NIR bands) it is not an intrinsic property 
of the Earth surface. Instead, we can say that it is a function of some intrinsic 
characterisation of the surface and the illumination conditions (spectral and angular). It is 
for this reason that we separate ‘optimal parameter estimation’ from ‘albedo estimation’ in 
consideration of the problem. In attempting to arrive at a useful intrinsic surface product 
related to albedo, GCOS (2004) specify ‘black-sky albedo’ (directional-hemispherical 
reflectance) as the product required for climate change purposes. This is essentially 
equivalent to the albedo in the absence of diffuse illumination. It is still however a function, 
rather than a fixed parameter, as it can vary significantly with solar zenith angle. It is 
therefore usually computed for a specific time (such as local solar noon) to provide a 
consistent framework. An obvious issue to arise from that though is that since the sun 
angle at local solar noon changes throughout the year, this normalized ‘black-sky albedo’ 
would apparently change over time, even if the surface underwent no change.  

A more flexible description of albedo can be provided by a data product that provides 
estimates of intrinsic surface properties that, with an appropriate radiative transfer model, 
allow the estimation of spectral directional reflectance (the spectral BRDF). This term, the 
spectral BRDF,  is the fundamental description of surface reflectance, being the 

ratio of reflected spectral radiance (Wm-2sr-1nm-1) exiting around a direction vector  
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(relative to a surface normal vector) to the spectral irradiance (Wm-2nm-1) incident on the 
surface from direction  at some wavelength . More practically, we define the BRF, the 

bidirectional reflectance factor  (unitless), the ratio of the BRDF to that of a 

perfect Lambertian reflectors under the same illumination conditions, over a waveband . 
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2.3 Definitions and Abbreviations 

2.3.1 Definitions 

2.3.2 Spectral and directional quantities 

Item Definition 

    zenith angle (radians) 

    azimuth angle (radians) 

     solar geometry vector 

     viewing geometry vector 

     incident geometry vector 

    wavelength (nm unless otherwise specified) 

    waveband Λ of width Δλ  

2.3.3 Atmospheric quantities 

Item Definition 

  At satellite radiance (in direction , 

illuminated from direction ). 

   Downwelling spectral radiance (at the 
ground) in direction . 

   Downwelling spectral radiance at the 
bottom of the atmosphere over a totally 
absorbing lower boundary.  

    under assumptions of isotropic 

diffuse illumination. 

   Downwelling diffusely transmitted radiance 
at the bottom of the atmosphere for a totally 
absorbing lower boundary. 

   Integral of  over sky illumination 

hemisphere. 

   Downwelling sky radiance under 
Lambertian surface assumptions. 

    Exoatmospheric solar irradiance. 

    Spherical albedo of the atmosphere for 
upward travelling radiation. 

   

h
l

m
s( )

   

E
sl

   

r
l
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   Downwelling direct transmittance of the 
atmosphere along the path from the Sun to 
the ground. 

    Effective transmission functions for 
atmospheric influence (i=0…3). 

   Downwelling diffuse transmittance of the 
atmosphere along the path from the Sun to 
the ground. 

   Total transmittance of the atmosphere along 
the path from the Sun to the ground. 

   Total transmittance of the atmosphere along 
the path from the ground to the sensor. 

    Proportion of diffuse illumination (at the 
bottom of the atmosphere). 

    Proportion of diffuse illumination (at the 
bottom of the atmosphere) for a totally 
absorbing lower boundary. 

    Proportion of diffuse illumination (at the 
bottom of the atmosphere) for a totally 
absorbing lower boundary; equivalent to 

 

    Proportion of diffuse illumination (at the top 
of the atmosphere) for a totally absorbing 

lower boundary; equivalent to  

    Degree of multiple scattering enhancement. 

   Normalised sky radiance distribution under 
an absorbing lower boundary. 

    Horizontal visibility. 

   Rayleigh scattering extinction coefficient at 
sea level. 

    Aerosol optical depth (AOD) at 550 nm. 

 An ancillary term used in compensating for 
BRDF effects in surface-atmosphere 
coupling. 

2.3.4 Reflectance-based quantities 

Item Definition 

   

t
l

-m
s( )

   

ti

  

Tl -ms( )

  

gl -ms( )

   

gl mv( )

   

D
l

   

D
0l

   

D
0l¯

  

Tl -ms( ) gl -ms( )
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    Lambertian-equivalent surface reflectance 
(surface reflectance retrieved from 
atmospheric correction, with surface 
Lambertian assumption) 

    Local average Lambertian surface 
reflectance. 

     Lambertian equivalent reflectance with 
multiple interaction enhancement. 

   Atmospheric intrinsic reflectance (path 
reflectance) 

   Spectral bidirectional reflectance distribution 
function (BRDF). 

   Spectral bidirectional reflectance factor 
(BRF). 

   Apparent spectral bidirectional reflectance 
factor (BRF). 

   Directional hemispherical reflectance (black 
sky albedo) 

    weighted directional hemispherical 

reflectance 

    bihemispherical reflectance (white sky 
albedo). 

     weighted bihemispherical reflectance. 

    Local average bihemispherical reflectance. 

    RossThick – LiSparse Reciprocal (RTLSR) 
BRF kernel model parameter X. 

Note that these are also referred to by an 
index when convenient, so that 

. This variation in 

notation also applies to any kernels. 

   RTLSR BRF model kernel X. 

   Directional hemispherical integral of 

 for direction . 

    Bihemispherical integral of . 

     weighted bihemispherical integral of 

   

R
l

   

¢ R L

   

RLL

  

BRDF
l

   

N
sky

   

RL

   

¢ R L

   

N
sky
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. 

   Weighted sum of  and  for given 

atmospheric conditions. 

    The departure of  with respect to . 

2.3.5 Albedo-related quantities 

Item Definition 

   Directional hemispherical integral of 
reflectance (black sky albedo). 

    Bihemispherical integral of reflectance 
(white sky albedo). 

     weighted bihemispherical integral of 

reflectance. 

 Surface albedo (over all wavelengths) 

   Surface albedo (full expression) over 
waveband . 

   Surface albedo over waveband 
 
under 

assumptions of direct and isotropic diffuse 
illumination. 

 

   

K X

   

¢ K X l

   

dK x,l
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2.4 Abbreviations 

(A)ATSR(-2) (Advanced) Along-Track Scanning 
Radiometer (-2) 

BRDF    Bidirectional Reflectance Distribution 
Function (units sr-1) 

NIR Near Infrared 

VIS Visible 

SW Shortwave 

fAPAR Fraction of Absorbed PAR 

PAR Photosynthetically Active Radiation 

GCM Global Climate Model 

IDL Interactive Data Language (Research 
Systems Inc.) 
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3 Algorithm overview 

3.1 Introduction to the problem and design philosophy 

The purpose of the algorithm is to produce global estimates of albedo in three broad spectral 

wavebands every 8 days, at 1 km spatial resolution (GlobAlbedo_TS_D02_V_2.1). This section 

provides an overview of the algorithm developed. Detailed technical issues are discussed in the 

specific ATBDs associated with each stage of the processing. 

The first issue which needed to be addressed is trying to define an albedo product, as albedo is 

not an intrinsic surface product, i.e. it is not simply a property of the land surface, but conditioned 

by the spectral and directional nature of the overlying atmosphere. This means that users must 

pay careful attention to what we mean by albedo in this product and what they suppose the term to 

mean when they use it. The use they make of the data will depend on their particular application, 

so we provide data and functions to predict albedo under any desired atmospheric conditions, but 

have a simpler ‘summary’ set of albedo-related terms in the final output product.  

The quantities we need to estimate albedo are all spectral and directional integrals of surface 

spectral BRDF, so in many ways the task is quite straightforward: so long as we can access 

estimates of the surface spectral BRDF over a range of angles and wavelengths, we only require 

some model to perform the integrations. In many related problems, we use samples at fixed 

quadrature points which are weighted to estimate integrals. However, when estimating surface 

spectral BRDF from satellite data we have no control on the angular and spectral sampling. These 

are conditioned by the spectral characteristics of the particular sensors to be used and the platform 

sun-synchronous orbits and sensor optical/scanning mechanisms involved. Furthermore, the 

angular samples available vary considerably with latitude and time of year, and importantly, are 

restricted by clouds, cloud shadow and, to a lesser extent, by large-scale topographic shadowing. 

At this point, it is worthwhile clarifying the terminology we will use for reflectance-related terms. 

The term BRDF has a formal definition (see Schaepman-Strub et al. 2006 for details), being the 

incremental reflected radiance from a surface in an infinitesimal solid angle around a (‘viewing’) 

vector relative to the local normal vector due relative to the incremental irradiance in an 

infinitesimal solid angle around an (‘illumination’) vector relative to the local normal vector. It has 

units of sr-1. We use this term when referring to intrinsic properties of the surface, and equally to a 

mathematical model of this. The spectral BRDF is this same term as a function of wavelength. 

When considering Earth surface properties, the local normal is the tangent to an assumed geoid. 

The BRF (unitless) (or spectral BRF, its equivalent as a function of wavelength) is the radiance 

leaving the surface in an infinitesimal solid angle around a (‘viewing’) vector due to illumination in 

an infinitesimal solid angle around an (‘illumination’) vector, divided by the radiance leaving the 

surface due to the same illumination conditions from a perfect Lambertian reflector. When the 

illumination is from the entire hemisphere, we should formally refer to the HDRF, the 

hemispherical-directional reflectance factor. As the field of view of a sensor has a finite field of 

view, we should refer to the HCRF the hemispherical-conical reflectance factor, although for a 

small instantaneous field of view, we may consider this an approximation to the HDRF. We can 

think of the HDRF then as something we can relate to a measurement (with a small instantaneous 

field of view as is the case for data here) under ambient illumination conditions. If the surface were 
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assumed Lambertian in nature, then any measurement of the HDRF could be treated as an 

estimate of the BRF. As we shall see later, many schemes for dealing with atmospheric influences 

on estimating the surface reflectance do make this Lambertian assumption, so we can also think of 

a HDRF ‘measurement’ as a form of Lambertian-equivalent BRF. Throughout this text, we will use 

the term BRDF (or spectral BRDF) where appropriate and will generally refer to a ‘measurement’ 

of HDRF at the Earth surface (or more formally HCRF) derived from a treatment of atmospheric 

influences on a TOA measurement of radiance, more simply as SDR (Surface spectral Directional 

Reflectance), where the spectral variation is over some finite sensor waveband. Remember that 

where a Lambertian assumption is made (e.g. in the atmospheric correction) the HDRF is 

equivalent to the BRF and so the text may equate (spectral) BRF with SDR. When this information 

is more formally treated, we use the term Lambertian-equivalent BRF to describe this quantity. In 

more general usage, we refer to SDRs. 

To produce a useful albedo product from ATSR-2, SPOT4-VEGETATION, SPOT5-

VEGETATION2, AATSR and MERIS, the disparate spectral and angular sampling of the different 

instruments needs to be carefully considered. 

 

Figure 3-1. Spectral response functions of the different sensors (from 
GlobAlbedo_BBDR_ATBD_V2.0, 2010)  

Error! Reference source not found. shows the spectral response functions for MERIS, 
ATSR and SPOT4-VEGETATION. The functions for the other instruments are very similar 
to these (ATSR-2 to AATSR, and SPOT5-VEGETATION2 to SPOT4-VEGETATION). 
Each sensor has distinct angular sampling capabilities as well (see section 4.6.2 of 
GlobAlbedo_Albedo_ATBD_V2.0, 2010). 

The model that we require then needs to be able to take sample estimates of surface 
spectral BRDF and estimate the appropriate spectral and angular integrals. Issues relating 
to model selection are discussed in detail in section 4.3 of 
GlobAlbedo_Albedo_ATBD_V2.0 (2010), where it is noted that there are distinct 
advantages to using linear models of the BRDF, and for reasons of direct compatibility 
with the corresponding MODIS Collection 5 product, MCD43, these are chosen to be the 
linear kernel models RossThick, LiSparseReciprocal described in Wanner et al. (1995). 
However, the current state of these models is that they have a distinct set of (3) model 
parameters for each waveband considered, so they have no mechanism, other than 
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defining the parameters for each waveband required, in dealing with spectral integration 
and associated issues. Whilst other spectral-directional models of surface reflectance do 
exist, they are not considered appropriate (or general enough) for this task. There are, in 
addition, distinct advantages in processing time to the use of linear models. 

When estimating albedo-related quantities from a single sensor, where the wavebands 
used are invariant (such as in MCD43 and the MSG/SEVIRI1 products), processing can 
proceed from the surface spectral BRDF (or HDRF/BRF) estimates by fitting the linear 
kernel models to sets of observations at each waveband, to permit angular integration of 
reflectance. Spectral integration is performed as a second step, being typically 
implemented as a linear weighting of the particular wavebands available (Liang, 2000). 

The process can be visualised as: 

 

where 

  

SDR
l  are sets of surface spectral directional reflectance data in the sensor 

wavebands, 

   

F
l
 are sets of spectral model parameters, 

   

F
L
 are sets of broadband model 

parameters and 

   

A
L
 is broadband albedo. We can state that since the functions 

   

L
i

x( ) all 

involve linear models (they can all be specified by matrices that depend only on the 
particular sampling characteristics), the order of the operations is not important. This is a 
fundamental assumption made in the GlobAlbedo product. It would be strictly true if 
albedo and 

  

SDR
l
 were intrinsic surface properties, but is slightly complicated by spectral 

variation in atmospheric interactions. This can, however, be treated by applying 
appropriate broadband terms for weighting factors such as the proportion of diffuse 
illumination or the downwelling sky radiance.  

Since we can change the order of the operations, we can write: 

 

Thus, when only disparate spectral sampling is available we can apply the spectral 
integration as the first step (to estimate broadband directional reflectance), and then apply 
the linear directional model to estimate the broadband model parameters. This will result 
in the same albedo estimate as if the original order had been maintained, but this has the 
distinct advantages that: 

(1) processing costs are reduced, as BRDF model operations need only be performed 

on the 3 broad wavebands; 

                                            
1 http://landsaf.meteo.pt/algorithms.jsp?seltab=3 
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(2) data from sensors with disparate spectral sampling can be directly combined (with 

appropriate uncertainty estimates) in the modelling framework. 

There is therefore no need to produce separate albedo products from each individual 
sensor and then combine these: all spectral input data can be converted to its broadband 
equivalent prior to angular modelling. 

An additional advantage of this framework is that data from any sensor can be input to the 
scheme (provided it is first converted to a broadband equivalent) with no further 
modification of the code. The algorithm and its implementation are therefore ‘future 
proofed’ to be able to take data from forthcoming sensors such as those on Sentinel-3. 

Most, if not all, current albedo products operate by performing an ‘atmospheric correction’ 
on ‘valid’ pixel samples, binning these samples into a grid representation, and proceeding 
from that to model albedo from those samples. The GlobAlbedo product follows this same 
general line of processing. One issue with this approach is that if atmospheric correction is 
performed on a per scene basis, with no prior knowledge of the surface reflectance 
assumed, the directional nature of the surface reflectance cannot be treated in decoupling 
the surface signal from that measured by the sensor through the atmosphere. This leads 
to the decoupling being performed under the Lambertian surface assumption, i.e. 
assuming that there are no variations in BRDF with angle at the surface (even though this 
is an important element of what we are trying to characterise), i.e. HDRF is treated as if it 
were BRF. Most, if not all products then make the assumption that this has no impact on 
the retrieved BRF. In fact, the impact can be quite large at high zenith angles and more 
turbid atmospheres (Wang et al., 2010). However, we will tend to have large uncertainties 
associated with such samples in this case, so this could formally be treated simply as an 
additional error term. That said, we show in GlobAlbedo_Albedo_ATBD_V2.0 (2010) 
section 4.3 that the first-order impacts of the coupling can easily be treated in an optimal 
estimation framework with linear models. This provides another unique feature of the 
GlobAlbedo product. 

A further important aspect of the product is that all merging of data and estimation of 
albedo is conducted in an optimal estimation framework, where we attempt to characterise 
the uncertainty at each stage of the processing, and propagate these uncertainties 
through to the final product. Therefore, even if some of the data used happens to be of 
relatively poor estimated quality (e.g. lack of spectral sampling at longer wavelengths for 
the MERIS instrument – see Error! Reference source not found. – means that the ability 
o predict reflectance over the full SW spectrum is limited), this will be recognised in the 
processing chain by assigning a relatively high uncertainty to such samples. This attempt 
to quantify uncertainties should also aid in interpretation of the data, beyond the simple 
QA measures that are typically output from current products. 

The design philosophy of this algorithm then is to first convert all (valid) input satellite data, 
no matter what the sensor, to broadband equivalent directional reflectance (BBDR) data, 
with associated uncertainty matrices. These are then combined in an optimal estimation 
framework to retrieve the model parameters allowing description of albedo (through 
appropriate angular integrals). 
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3.2 Overview of the ATBDs 

Error! Reference source not found. shows an overview of the processing scheme. 
atellite images, comprising DN data in a spatial array in the sensor swath coordinate 
system, along with ancillary information (on the atmospheric state and related information 
such as surface pressure/altitude) are ingested into a pre-processing step. All sensor 
information is treated the same way here, although minor details such as the specific 
LUTs and thresholds may vary between sensors. 

The output of the pre-processing stage is a set of BBDR data in three spectral channels 
(VIS, NIR, SW) on a SIN grid (see below), along with associated uncertainty and ancillary 
information (primarily, weighted linear kernel integrals here), as well as pixel classification 
information (the primary items of interest being snow/no snow and land flags). 

Sets of these data over some time window are then fed into an optimal estimation 
framework, along with a prior estimate of the model parameters. This produces a set of 
kernel model parameter estimates (with associated uncertainty) from which albedo may be 
estimated under any atmospheric conditions by the determination of appropriately 
weighted integrals. The model parameters are fed into a post-processing step, which 
summarises the information into black sky albedo (directional-hemispherical integral 
reflectance at local solar noon) and white sky albedo (bihemispherical integral of 
reflectance). During the post-processing phase, fAPAR (bihemispherical) is estimated 
from the white sky albedo data and other required datasets are passed through to the 
output product. 

More details concerning the pre-processing stage are illustrated in Error! Reference 
ource not found.. Here we see that there are five main processes involved:  

1. pixel identification 

2. aerosol concentration estimation 

3. atmospheric correction 

4. spectral integration of reflectance 

5. binning/gridding 

The first of these, pixel identification, involves taking the raw DN value and attempting to 
assign a classification to the pixel (e.g. cloud). This is covered in detail in the document 
GlobAlbedo_PixID_ATBD_V2.0 (2010) and outlined briefly below. 

The second stage involves attempting to estimate the aerosol optical thickness from the 
data and supplementary datasets. This is detailed in GlobAlbedo_Aer_ATBD_V2.0 (2010) 
and outlined briefly below. 

The final stages of processing involve applying the atmospheric correction to the data 
identified as clear of cloud in the classifier to give spectral directional reflectance factors 
(Lambertian equivalent). These are then converted into estimates of broadband directional 
reflectance, and finally each pixel of the input swath data is assigned to processing grid 
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cell (SIN projection grid). These stages of pre-processing are dealt with in detail in the 
document GlobAlbedo_BBDR_ATBD_V2.0 (2010). 

All information on the optimal estimation framework and post-processing to albedo (and 
related information) are given in GlobAlbedo_Albedo_ATBD_V2.0 (2010). 
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Figure 3-2. GlobAlbedo Overall processing chain 

Sattellite DN Satellite DN 

Pre-processing 

Sattellite DN Ancillary 

Atmospheric 

information

Sattellite DN Classification, 

BBDR, 
BBDR

 

Optimal Estimation 

Sattellite DN Prior F, 
F

 

Sattellite DN Posterior F, 
F

 

Post-processing 
Sattellite DN fAPAR, etc. 

Albedo, 
albedo

 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 28 of 313 

 

Figure 3-3. GlobAlbedo Pre-processing Steps 
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3.3 Pre-processing 

A series of pre-processing steps are performed to derive broadband Lambertian 
equivalent reflectance and associated angular kernel values. These steps are: 

3.3.1 Pixel identification  

The GlobAlbedo Pixel Identification processor (see GlobAlbedo_PixID_ATBD_V3.0 
(2011)) classifies each pixel to be processed according to a series of pixel categories, 
which include cloud, clear-land, clear-water and clear-snow. Cloudy pixels are not 
processed in GlobAlbedo, while land, water and snow pixels must be distinguished 
because of the particular processing steps associated to each surface type. In particular, 
water pixels must be separated from land surfaces even in the case of continental water 
bodies, as these are flagged in the final albedo product. Snow and snow-free surfaces will 
also be considered separately in the albedo product. 

3.3.2 Aerosol retrieval  

Estimates of aerosol extinction are need for the conversion from top-of-atmosphere 
measurements to surface reflectance, and for the partitioning of at-surface direct and 
diffuse irradiance fluxes required to calculate atmospheric weighting e.g. the different 
kernel terms in equation 14 of GlobAlbedo_Albedo_ATBD_V3.0 (2011). The approach is 
detailed in GlobAlbedo_Albedo_Aer_V3.0 (2011). Aerosol optical depth (AOD) and 
aerosol model plus an estimate of the uncertainty in AOD are derived by the Aerosol 
Retrieval processor from every data set to be processed.  It must be noted that AOD and 
aerosol models are assumed to sufficiently account for the variability in the atmospheric 
conditions to calculate these terms, while water vapour and ozone column contents are 
needed in addition to aerosol parameters in order to retrieve the most accurate 
Lambertian equivalent reflectance. All other atmospheric constituents are just set to 
climatology values in the GlobAlbedo processing chain. This selection is justified by the 
relatively higher impact of aerosol extinction in the spectral channels of the GlobAlbedo 
instruments, particularly in the visible.  

3.3.3 Spectral directional reflectance retrieval 

Pixel classification flags and aerosol maps provided by the Pixel Identification and Aerosol 
Retrieval processors, respectively, are inputs to the SDR/BBDR processor to derive 
Lambertian equivalent reflectance from top-of-atmosphere measurements over clear-land 
and clear-snow surfaces.  

SDR retrieval in GlobAlbedo (GlobAlbedo_BBDR_ATBD_V3.0, 2011) is designed to 
calculate pixel-wise Lambertian equivalent spectral reflectance plus spectrally 
uncorrelated uncertainties for each spectral reflectance value. Reflectance retrieval is 
performed by means of the inversion of equation 4, the different atmospheric parameters 
being provided by pre-stored look-up tables (LUTs) compiled with the MOMO radiative 
transfer code. These LUTs are searched for the particular viewing, illumination and 
atmospheric conditions of each pixel. Uncertainties in the instrument radiometric response 
and in AOD, columnar water vapour and columnar ozone are propagated to uncertainties 
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in Lambertian equivalent reflectance by means of pre-stored gradients. Spectral weighting 
terms for albedo retrieval are also calculated from interpolation of the LUT.  

3.3.4 Broadband conversion 

Narrow-to-broadband conversion (GlobAlbedo_BBDR_ATBD_V3.0, (2011)) of Lambertian 
equivalent reflectance is also performed by the SDR/BBDR processor. Broadband 
reflectance is calculated by means of the linear combination of directional reflectance in 
different narrowband channels. The uncertainty in broadband reflectance including the 
covariance between the three broadband spectral regions is also calculated in this 
process by assuming that the linear conversion applied to narrow band reflectance can 
also be applied for the conversion of narrowband errors to broadband errors. 

Narrow-to-broadband conversion coefficients are also used to convert from spectral to 
broadband weighting terms. 

3.3.5 Kernel-integral estimation 

The linear model parameter estimation requires that, if Lambertian equivalent reflectance 
data are used, the kernels are themselves weighted by the sky radiance and other 
atmospheric interaction terms (equations 13 and 14 in GlobAlbedo_Albedo_ATBD_V3.0, 
(2011)). This is estimated as part of the BBDR retrieval, with the new kernels are weighted 
according to the prevailing atmospheric conditions at the time of acquisition, according to 
the atmospheric characterisation in MOMO.  

3.3.6 Data binning 

Data (a QA layer, BBDR for 3 bands, associated uncertainty (6 values), and 9 kernel 
values (three for each waveband, see 4.6.1) are projected to the MODIS sinusoidal grid2 
and ‘binned’; resampling using a nearest neighbour approach. If multiple samples for a 
particular day/sensor exist for any one grid cell, multiple spatial datasets are created so 
that all available samples are accounted for. This processing step is covered in 
GlobAlbedo_BBDR_ATBD_V3.0 (2011), although the methods used are standard BEAM 
implementation methods. 

3.4 Optimal Estimation 

The details of and justification for the optimal estimation framework are presented in 
GlobAlbedo_Albedo_ATBD_V3.0 (2011) and illustrated in Error! Reference source not 
ound.. 

3.5 Post-Processing 

A post-processing stage after the optimal estimation involves a merging of the ‘snow’ and 
‘no snow’ data streams and the calculation of ancillary output parameters (such as 
fAPAR). This is described in GlobAlbedo_Albedo_ATBD_V3.0 (2011). 

 

                                            
2 http://remotesensing.unh.edu/modis/modis.shtml 
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Figure 3-4. Optimal estimation 

3.6 Projections and gridding 

Given the significant user experience with the MODIS BRDF/Albedo product (Schaaf et al. 2002), 

now known as MCD43, and the availability of that product for the past decade, we aim to maintain 

a good degree of compatibility with MCD43 as required in the SoW and as detailed in the 

Technical Specification. This will facilitate users to switch between products with relative ease.  

 

 

 

4 Practical considerations 

Global datasets of the type being generated here are driven by very large amounts of data 
and can generate large amounts of output. 

At present, we are only able to provide rough estimates of expected processing times and 
data file sizes. The reasoning behind these estimates is given below. 

4.1 Processing time estimates 

4.1.1 Pre-processing 

The estimate for the pre-processing stages of the complete archive of AATSR and 
VEGETATION assumes 326 tiles to be processed globally, for 15 years, at around 4 core 
days per tile and year. This gives 19,560 core days for the whole data set of VGT and 
AATSR. On the SU supercomputer, with 80x8 cores, this can be achieved in 30.6 days 
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(minimum estimate). With a safety factor of 2, the maximum estimate would be around 60 
processing days.  

For MERIS, we have about 41,000 orbits to process (over the complete L1b archive). 
Current tests indicate processing time of around 10min/orbit including AOT/BBDR retrieval 
and reprojection, giving 285 core days for the archive. On 10 cores, this could be achieved 
in 30 days. 

We currently have no estimates for the processing time for the pixel classification, but 
might suppose a 10% increase in the above figures. This gives a total of 21,830 core days 
for pre-processing. It is clear that this is only achievable using a very large number of 
processing cores, the main overhead being AATSR and VEGETATION processing. 

It is very likely that we will be able to reduce these numbers once code efficiencies are 
implemented. 

4.1.2 Optimal estimation 

The processing cost for the optimal estimation is currently not well known. A current 
prototype of the code takes around 4 core hours per tile, per 8-day date. Assuming 326 
tiles to be processed globally, for 15 years (45 samples per year) gives 36,675 core days, 
or around twice the cost of the pre-processing. However, a large part of this is the 
currently inefficient algorithm: it reads data for periods of 64 days (which are then 
weighted), and forms and sums matrices per pixel. An efficient form of the algorithm is 
described in GlobAlbedo_Albedo_ATBD_V2.0, (2010) that operates on large spatial 
arrays simultaneously and uses the result for time t as input to the following time step. 
This sequential approach should introduce processing savings of at least a factor of 10. 
That would still require around 120 cores to process the archive in 30 days however. The 
impact of the simultaneous large spatial arrays is currently unknown, but should speed the 
code up several times at least. 

4.1.3 Post-processing 

The only significant processing step in post-processing other than data merging is the 
fAPAR estimate. This is achieved through LUTs and so the main limiting factor is data 
input/output. 

4.2 Data volume and timing estimates 

4.2.1 Input data 

The data volume for the full archive is given in the statement of work for the project and is 
repeated below for ease of reference. 
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Figure 3. Typical dataset sizes for the input data streams in GlobAlbedo  

4.2.2 BBDR data 

Each BBDR dataset currently contains 35 channels of information, amounting to about 
2Gb/orbit (uncompressed) for MERIS, or a total of 80 Tb for the MERIS archive. For 
archiving, the data (in their current form) should compress by a factor of around 10, giving 
around 8 TB (compressed) for MERIS.  Based on a joint AOT-BBDR processing scheme 
on a tile basis for the prototype processing the average time per tile is around 38 minutes. 
For a single year (2005 prototype) a conservative estimate (95 island tiles and 231 
continental tiles, assuming the same processing time for both) is around 191 hours per 
year. This results in a conservative estimate of 55 processing days for the 7-year dataset 
for MERIS. 

The total number of VGT tiles to be processed is 244253, with a total data volume of 1.5 
TB (compressed). The processing time for BBDR (based on average processing times for 
prototype processing of 40 annual tiles/dat) for 12 years of VGT data (1998-2010) for the 
235 majority land tiles is around 70 processing days for VGT.  

Based on a separate AOT processing on an orbital basis (for the prototype 2005 
processing) (11525 files) gives an average time of 4.3 minutes per file, so with 60 
processing nodes available, this is around 15 hours of processing. The processing from 
AOT to BBDR is around the same, giving a processing time from VGT L1b to BBDR or 
around 30 hours per year, or 15 days for the 12 year dataset. For this way of processing, 
there would need to be an additional processing step to split the orbit tiles into MODIS tile 
equivalents, but this still would place the total processing significantly under the 70 
processing days following the current scheme. 70 processing days then should be 
considered the upper estimate of processing time for the VGT archive to BBDR. 

Estimates for (A)ATSR are a data volume of 6GB per tile and year (compressed) or 
around 20 TB of data (compressed) for the 15 year archive. The processing time required 
to BBDR is around 100 processing days for (A)ATSR, which should be a conservative 
estimate. Going to an orbit-based approach should provide similar speedups to those 
indicated for VGT (around a factor of 4.7) giving around 22 processing days. 
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It may be possible to reduce the number of channels of information associated with the 
BBDR dataset, which will clearly reduce the data volume proportionally.  

4.2.3 Model parameter data 

Here, we have a global gridded product 45 times per year for 15 years. Assuming the 
Earth land surface to be around 150 x 106 km2, that equates to a data volume (ignoring 
non-land pixels completely) of 0.101 x 1012 times the number of bytes per pixel. The 
minimum information to be stored is: 9 parameter values, 45 uncertainty terms, plus 
several QA layers (e.g. 4 bytes). If we assume 2 bytes sufficient resolution for the 
parameter values and uncertainties, we have 140 bytes per pixel (minimum). This gives a 
minimum data volume of 13.16 TB. If we assume another ~10% of data for the snow 
product, the lower bound estimate is around15TB, with an upper bound estimate of 30TB. 

For reference, the (intermediate) accumulator file sizes are: Daily accumulator files 500 
MB x 540 days for 1 year processing (prototype) = 270 GB. 8 day full accumulator files 
reduces this to around 23 GB per tile, per year for all sensors (no matter how many 
sensors). There are two versions of these files (snow and no snow) so the total size for 
intermediate products of 586 GB per tile/year. 

The BRDF merged (snow/no snow) product has 59 channels of information per tile/8 day 
period, giving 325MB per tile/8 day. This equates to (326 tiles, 46 samples per year, 15 
years) 69.7TB (uncompressed). 

The processing time from BBDR to BRDF is on average 15 processing hours on a single 
machine (Sun Blade) for 1.5 years of data, giving 1.6 tiles processed per day per machine, 
or 16 tiles per day using the current capacity of 10 machines. 326 tiles (1 year) are then 
processed in 20.3 days, so 15 year in 203 days. Increasing the number of machines to 12 
then brings the total down to 169 days. 

4.2.4 Final product data 

The total number of pixels to serve is the same as for the model parameter data, giving 
0.101 x 1012 times the number of bytes per pixel. The total number of data planes is 
reduced to 18 from 54 however.  

The output 1 km 8 day product is a single 18-channel file of 99MB per tile, or 4.4GB for 
one year, for a single tile. This corresponds to 1.4TB per year (326 tiles) (uncompressed), 
so the 15 year 1 km dataset is 21TB. 

The 0.05 degrees product is around 0.99MB per year or around 15 MB for the total 
dataset.  One year of data for the12 monthly-global product is around 1.15GB so 17.25 
GB for the total dataset. 

The product merging and albedo estimation (final product) is processed at a rate of around 
24 tiles per machine per day, or 240 tiles using 10 blades or 1.4 days for 326 tiles (21 
days for all data). 

5 Error budget estimates 

See the Final Validation report for a discussion on this.  
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6 Assumptions and Limitations 

The assumptions made in developing the product are detailed in the various ATBD 
chapters. The product uses an optimal estimation framework that considers and tracks the 
uncertainty of the various data sources. This is the first time that such a product has been 
generated, and it is worth mentioning that such a method is reliant on reasonable 
estimates of the uncertainties (at least as relative uncertainties) and their structure.  

Assuming that the models used are capable of describing the underlying functions they 
are supposed to represent, and that extraneous influences in the observational dataset 
can be filtered out (e.g. clouds etc.) the main limitations to the product then relate to 
information content of the data. This is a function of the particular spectral and angular 
sampling regimes available from the sensors used here and not a feature that we have 
any direct control of. Thus, for example, if a user wishes to know the directional-
hemispherical reflectance of some particular area at a particular solar zenith angle, and 
the dataset does not contain samples around that part of the angular sampling space, the 
estimate will be relatively poor. A very positive feature of this product is that the user will 
be informed of this, since the uncertainty associated with that request is likely high.   

 

7 Future Work 

Great strides forward have been made in the GlobAlbedo project. Perhaps the main 
advance has been in defining an optimal estimation framework that can operate with data 
from different sensors (of approximately the same spatial resolution). A significant 
advance then is that the observation opportunity is increased, and another that uncertainty 
automatically drops out of the system. The use of (weak, climatology) priors is also 
important and readily integrated in this framework. This allows for a gap free product, 
making best use of the multiple sources of information available. 

 

Processing in GlobAlbedo is only for broadband albedo. Future developments of ESA 
spectral albedo products may be able to be developed using that line of reasoning. The 
main advantage would be the ability to have an expectation of surface directional 
reflectance (at any optical wavelength). This would have many uses, including the 
implementation of multiple pass processing for more refined pixel classification (cloud, 
shadow, snow etc) as demonstrated in the US MAIAC system (in that case, only for 
MODIS wavelengths), as well as  providing better constraints on the land surface 
reflectance for refining the estimation of the atmospheric signal.  

 

One aspect of the GlobAlbedo processing that should receive more attention is the 
temporal weighting functions used in the optimal estimation. At present, these are all set to 
attempt to mimic a likely 8-day temporal dynamic (the weighting function decays to 0.5 in 
+/- 8 days). This is partially to keep the properties of the dataset similar to those 
application scientists are used to, and is most likely a good compromise figure for typical 
dynamics. That said, in more general regularisation approaches (e.g. Lewis et al. 2012) 
the degree of temporal smoothness (related to the width of the temporal function) is 
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treated as a hyper parameter that should be solved for, and it would most likely be 
beneficial to have this as an adaptive measure. Then, for example, we would get more 
robust results for areas that are slowly changing that also have a high degree of 
cloudiness. Another refinement to the temporal processing that would likely be of value 
would be to explicitly search for break points in the signal, as at present sudden changes 
(e.g. due to fire) are liable to over smoothing.  

 

An interesting remark about all such proposed refinements is that they (other than perhaps 
edge-preserving regularisation) can be achieved using linear models, which greatly 
simplifies the estimation framework and the interpretation of uncertainties. That said, it is 
not at all clear that users are making full use of the detailed uncertainty information we 
currently produce, and in fact the final GlobAlbedo product currently has a simplified 
representation of uncertainties (i.e. not the full variance/covariance matrix). Part of the 
reason for this though is data volume. For “power users” the full matrix is available in the 
BRDF and these data are now stored at CEMS as there are insufficient resources at UCL 
for this. 

 

One could argue that ultimately, we should be moving towards satellite product 
interpretation systems where we directly link an estimate of land surface biophysical state 
(leaf area index etc) through to the satellite data with more sophisticated observation 
operators (e.g. EOLDAS). This would mean that instead of 'simply' tracking the land 
surface reflectance (with e.g. linear BRDF models as in GlobAlbedo), we would track the 
evolution of land surface biophysical state within an integrated (data assimilation) system 
that would also allow the estimation of radiative fluxes. This should be a medium term 
goal, but it has not yet been fully demonstrated that this can be achieved for global 
processing. Of course, some progress has been made in this area on the generation of 
existing EO products, but the lack of consistency often found in these has probably been a 
major factor that has limited their uptake in many communities. Until then, using linear 
models for solving for and describing surface reflectance is likely to remain important. 
Approaches that then partition the surface shortwave energy fluxes between the canopy 
and soil such as the TIP model of Pinty et al are appropriate to the current level of 
sophistication of interpretation. 

 

Another issue to mention is spatial scale. It would be ideal to have a surface reflectance 
tracking system (or even better a biophysical parameter tracking system) that could 
operate with data from multiple spatial scales. There is some progress in this area, but it is 
not clear how practical it is for global processing. 

 

Finally, is the subject of snow. This has a large impact on albedo, and is treated 
reasonably in GlobAlbedo, but other approaches should be explored. 
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8 Section A: Algorithm Theoretical Basis Document – Pixel Classification 
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9 Introduction 

 

The GlobAlbedo project will develop a broadband albedo map of the entire Earth’s land 

surface (snow and snow-free), which is required for use in climate modelling and research. 

An initial group of six users are working with the GlobAlbedo project team to define 

requirements and drive the project towards practical applications of the products.  

The final albedo products will include both black and white sky albedo over the entire 

globe with at least monthly frequency over the 1995-2010 time period, include uncertainty 

estimates,  and be integrated in three spectral broadband ranges, namely the solar 

spectrum (400-3000nm), the visible (400-700nm) and the near- and shortwave-infrared 

(700-3000nm).  

With the aim of deriving independent estimates making the best use of operational 

European satellites, GlobAlbedo sets out to create a 15 year time series by employing 

ATSR2, SPOT4- VEGETATION and SPOT5-VEGETATION2 as well as AATSR and 

MERIS.  Albedo retrieval will use an optimal estimation approach, as well as a novel 

system for gap-filling. 

This document describes the algorithm basis documenet for the Globalbedo pixel 

classification.  The document includes all assumptions, discusses technical tradeoffs and 

describes the algorithm in terms of physical background as well as mathematical 

breakdown.  

The document shall provide the baseline for understanding the algorithm as well as for 

implementation in a software processor and its verification. 

 

10 Applicable and Reference documents 

10.1.1 Applicable documents 

AD1  Doc. Number  Doc.. Title 
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10.1.2 Reference Documents 

RD1  Doc. Number  Doc.. Title 

 

10.2 Definitions and Abbreviations 

10.3 Definitions 

Item Definition 

  

  

  

 

 

10.4 Abbreviations 

AATSR Advance Along Track Scanning Radiometer  

ATBD Algorithm Theoretical Basis Document  

AVHRR Advanced Very High Resolution Radiometer 

BEAM  Basic Envisat Tool for AATSR & MERIS 
(http://envisat.esa.int/services/beam/)  

BRDF Bidirectional Reflectance Distribution Function  

BRF Bidirectional Reflectance Factor  

CLiC Climate and Cryosphere project 

EGD Effective Grain Diameter 

ENVISAT Environment Satellite (http://envisat.esa.int)  

EO Earth Observation  

ERS European Remote Sensing satellite  

ESA European Space Agency  

EUMETSAT European Meteorological Satellites Agency 

FSC Fractional snow cover 
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GCOS Global Climate Observing System  

GMES Global Monitoring for Environment and Security  

H-SAF Hydrology and Water Management SAF 

ICSU International Council for Science 

IGOS Integrated Global Observing Strategy   

IOC Intergovernmental Oceanographic Commission 

JAXA Japan Space Agency 

KO Kick-Off  

L1, L2 Level 1, Level 2  

LSA SAF Land Surface Application SAF 

MC Monte-Carlo 

MERIS Medium Resolution Imaging Spectrometer Instrument   

MODIS Moderate Resolution Imaging Spectroradiometer  

MSI Multi-Spectral Imager  

MTR Mid-Term Review  

NDII Normalized Differentiation Ice Index 

NDSI Normalized Differentiation Snow Index 

NIR Near InfraRed  

NOAA National Oceanic and Atmospheric Administration 

OLCI Ocean and Land Colour Instrument  

PAR Preliminary Analysis Report  

PM Progress meeting  

POLDER POLarization and Directionality of the Earth's Reflectances   

RB Requirement Baseline document  
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RTC Radiative Transfer Code  

RTE Radiative Transfer Equation 

S-2 GMES Sentinel-2 (http://www.esa.int/esaLP/LPgmes.html)  

S-3 GMES Sentinel-3 (http://www.esa.int/esaLP/LPgmes.html)  

SAF Satellite Application Facility 

SAJF Sensitivity Analysis Justification File  

SAP Scientific Analysis Plan  

SCA Snow covered area 

SCAR Scientifc Committee for Antarctic Research 

SCIAMACHY Scannin Imaging Spectrometer for Atmospheric CHartographY 

SLSTR Sea and Land Surface Temperature Radiometer  

SoW Statement of Work  

SPOT Satellite Pour l’Observation de la Terre  

SSA Single Scattering Albedo 

SSW Snow surface wetness 

STS Snow temperature for surface 

STSE Support To Science Element  

SWE Snow Water Equivalent 

SWIR Short Wave Infra Red  

TIR Thermal InfraRed  

TOA Top of Atmosphere  

UNEP United Nations Environment Programme 

UNESCO United Nations Educational, Scientific and Cultural Organization 

UNFCCC United Nations Framework Convention on Climate Change 
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UR Utility Report  

UV Ultra Violet  

VNIR Visible Near Infrared 

WCRP World Climate Research Programme 

WMO World Meteorological Organization 
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11 Algorithms’ overview 

The term “Pixel identification” refers to a classification of a measurement made by a space borne 

radiometer, for the purpose of identifying properties of the measurement which are influencing 

further algorithmic processing steps. Most importantly is the classification of a measurement as 

being made over cloud, a clear sky land surface or a clear sky ocean water or sea-ice surface. The 

term “pixel” is often used for such a measurement in order to express it being part of a spatially 

oriented collection of many measurements, which all are geo- located and which form, as a whole, 

an image of the earth below the satellite. 

While the information if a pixel is made over water or land can be taken from a static map, 

provided the geo-location of the pixel is better than the size of the pixel, as a good first guess, the 

cloud coverage is spatially and temporally highly variable and needs to be derived from the 

measurement itself. After knowing whether a pixel is cloudy or clear, in the clear sky case the land-

water information can be refined using the measurement. This is particularly necessary in the 

coastal zone where the actual land-water boundary is changing due to tides, when the pixel size is 

small enough to resolve this difference. Also maps are not always correct so that a radiometric 

refinement is advisable. 

11.1 Background 

A large portion of the earth surface is covered by clouds (Paperin et al, 2007). Consequently most 

earth observation images in the visible spectral domain include a significant amount of cloudy 

pixels. Such measurements are treated in two opposite ways: either cloud properties are retrieved 

, e.g. for weather forecast or climate studies (Wylie, D., 1998, Russow et al, 1999; Liou, 1992), or 

the focus of the interest is the earth surface – being it land or water/sea-ice – which is then 

masked by the cloud (Luo,2008). In the latter case the presence of the cloud needs to be 

identified, and the change of the surface reflectance due to the cloud has to be estimated. 

An image pixel can be cloud free, totally cloudy, or partly cloudy. In the cloud free case there are 

no water droplets or ice crystals in the atmosphere which change the surface reflectance. In the 

totally cloudy case the optical thickness is so high that the portion of surface reflectance at the 

signal measured by the satellite is negligible. The partly cloudy case comprises all intermediate 

situations where the measured reflectance is a mixture of a significant portion of the surface 

reflectance, but modified due to the presence of a cloud. This can be either due to an optically thin 

cloud, or the cloud is covering only a fraction of a pixel in the field of view of the sensor (Preusker 

et al, 2006). 

Cloud free and totally cloudy pixels can be identified rather easily, and most of the tests used in 

earth observation processing systems for cloud identification today, assign either of these two 

stages, and hence also partly cloudy cases have to be assigned to either of these two classes 

(Eumetsat, 2006). For spatial high resolution instruments such a binary cloud flag is not 

appropriate if several different higher level processing algorithms are applied, each of which 

having a different robustness to partial cloudy pixel (Brockmann, 2008). Some novel algorithms 

therefore deliver a graduated scale, as an indicator of the extend to which a signal is influenced by 

the presence of clouds (Schiller et al, 2008, Gomez-Chova et al, 2007, Merchant et at, 2006). 
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Such an indicator can be related to cloud properties, e.g. apparent cloud optical thickness, the 

atmospheric transmission (Schiller et al, 2008), or cloud features (Gomez-Chova et al, 2007). 

Clouds have certain characteristics which can be used for their identification and characterisation 

(Luo et al, 2008): 

o Brightness 

o Whiteness 

o Cold temperature 

o High altitude 

 

 However, none of these characteristics is always given if a pixel is cloudy; this is the main 

problem of cloud identification. 

Thin clouds are difficult to differentiate from bright land surfaces and clouds in the mountains can 

be lower than the mountain ridges around. Then other methods not based on the features given 

below must be used. In particular, the clouds can be also detected using the spatial and temporal 

variability of the reflected radiation.  In addition, clouds screen the tropospheric gases. This leads 

to the increase in the reflection inside corresponding gaseous absorption bands (e.g., 

2 2 2,  ,  H O CO O ), which is routinely used for the cloud top height monitoring (Fisher et al., 2000a). 

One way to detect clouds would be to work directly with optical measurements. Further, derived 

cloud physical properties can be used to characterise clouds and assess their impact on the 

retrieved signal. This includes, amongst others, cloud fraction, cloud top temperature, cloud top 

pressure, cloud type, cloud phase, cloud optical depths and cloud effective particle size. Such 

properties can be studied using the radiative transfer modelling. Fischer and Preusker (2000a,b) 

have done extensive work in this respect over the past years ( see also Mullet et al, 2007, Rathke 

et al, 2002, Brenguier et al 2000, Pawlowska et all,  2000). They have developed the MERIS 

algorithms for cloud top pressure, cloud optical thickness, cloud albedo and cloud type retrieval  

and have translated this knowledge into a probability based cloud detection algorithm (Preusker et 

al, 2006). 

Cloud detection became important with the systematic processing of the NOAA AVHRR instrument 

in the 1980s. Statistical histogram analysis methods were developed by Phulpin et al (1983). Most 

common used were threshold algorithms, e.g., Saunders et al. (1988). Large scale textures were 

identified using pattern recognition techniques as proposed by (Garant and Weinman, 1986). 

These methods worked quite well over the ocean but exposed problems in polar regions 

(separation of clouds from ice and snow) and in the tropics (low level, warm clouds). A good 

overview of the cloud screening techniques at the late 80s is given by Goodman et al. (1988). 

Improved methods are proposed for the AVHRR (Simpson et al, 1996) and later for ATSR 

(Simpson et al 1998). 
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The cloud screening algorithms for the ATSR 1 and 2 in the 1990s were mainly based on previous 

work for AVHRR and use spectral threshold tests (Birks et al, 2007). The thermal band at 12µm is 

used as main tool to identify the cold cloud surface by a threshold, supported by other thresholds 

on band differences and on the histogram of the radiance distribution in the image. The unique 

feature of two views under different angles of the same pixel and the spatial coherence of the 

radiance are also exploited. The cloud screening of the AATSR is basically the same with refined 

and additional tests due to additional bands. Recently, tests on vegetation and snow indices have 

been introduced (Birks et al, 2007). However, application oriented projects are not satisfied with 

the standard cloud screening and are proposing alternative methods, for example for the 

GlobCarbon processing (Plummer et al, 2008). 

The MERIS Level 2 cloud screening is a combination of 8 different tests (Santer et al, 1997). Three 

of those are classical threshold tests on spectral radiances or differences, and five are connected 

with the pressure estimates derived from the differential oxygen A-band absorption measurements. 

However, due to the current insufficient quality of the standard pressure products derived from the 

measurements, these tests are not used. 

The potential of the O2A feature has been addressed recently in ESA funded projects, namely 

“Exploitation of the oxygen absorption band” and “MERIS AATSR Synergy”. The result of this 

activities has lead to an upgrade of the operational MERIS pixel classification in the third 

reprocessing. Major improvement is due to including dedicated pressure algorithms for detection of 

the height of the scattering surface over land and ocean. 

The strong water vapour absorption at 1.38µm can be used to detect the presence of high clouds, 

including thin cirrus under daytime viewing conditions. With sufficient atmospheric water vapour in 

the beam path, almost no upwelling reflected radiance from the earth’s surface reaches the 

satellite which is in particular handy for snow covered surfaces. However, precipitable water is 

often less than 1 cm over polar and in high elevation regions. The 1.38 µm reflectance threshold is 

set to 0.03 for MODIS (Ackerman et al 2006). 

A big problem is the distinction between clouds and snow/ice, in particular for instruments which 

do not have spectral bands in the NIR and SWIR. An extensive study including the cloud screening 

over snow and ice has been undertaken by Stamnes, Hori and Aoki for the purpose of snow 

property retrieval (Aoki et al, 2007; Hori et al, 2007; Stamnes et al, 2007). Snow and ice are less 

reflective in the NIR spectral region, and the so called normalized differentiation ice index (NDII) 

and the corresponding snow index (NDSI) is a good tool to differentiate clouds from snow and ice. 

These indices are defined as follows:  
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The reflectance for ice decreases with the wavelength must faster as compared to snow. 

Therefore, large values of NDII signify the bare ice case. 

Also measurements of trace gas vertical columns (e.g., SCIAMACHY onboard ENVISAT) are 

disturbed by cloud presence because corresponding instruments have large fields of view to 
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enhance the sensitivity to small gaseous concentrations. Cloud clearing algorithms are described 

in (Cervino et al, 2000) for GOME, and Kokhanosky has recently reported on using MERIS to 

support the cloud screening for SCIAMACHY (Kokhanovsky et al, 2008). 

11.2 Methods 

Cloud detection methods can be categorized in the following classes (Brockmann et al, 2008): 

o Spectral threshold methods: Spectral characteristics, such as temperature, brightness, 

whiteness or height of the scatterer are tested against a threshold value. The threshold can be 

parameterized by viewing geometry, location or time. Most cloud screening algorithms given in 

the reference list include such tests. 

A special subsection of these tests concern spectral high resolution methods. Feature 

selection or PCA pre-processing is sometimes applied to reduce the dimensionality of the 

dataset. Such work is published by Lavant et al. (2005), McNaly et al. (2003), Rathke et al.( 

2002), Susskind et al. (1998). 

o Feature extraction and classification: The spectral data space, if transformed into a feature 

space, can be statically or dynamically (i.e. scene dependent) separated into cloud or clear 

classes. This group of algorithms also includes spatial structure based algorithms. Examples 

are given by Gomez-Chova et al. (2007). 

o Learning algorithms: The Baesian probability approach and general data mining techniques 

are employed. Cloud probability or cloudiness index values are generated after training the 

algorithm with simulated or measured data. Examples are given by Merchant et al, . (2005), 

Gomez-Chova et al. (2007) for AATSR  and Schiller et al. (2008) for MERIS. A generic 

approach of a learning algorithm has been developed by Colapicchioni et al. (2004) and  D’Elia 

et al. ( 2004). 

o Multitemporal analysis: Pixels are not always cloud covered and a time series of data is used 

to separate cloudy from clear cases. For example, such kind of method is applied by Baret in 

the Cyclopes processing (Baret et al, 2007). 

o Multi sensor approach: In cases, where multiple sensors are on the same platform and perform 

simultaneous measurements, the synergetic algorithms  can be used to better identify clouds. 

This was considered, for example,  in the case of MERIS and SCIAMACHY by Kokhanovsky  

et al. (2008) and MISR and MODIS  by Shi et al. (2007). 
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As it follows from the discussion given above, the screening procedures are of great importance 

for successful retrievals of snow properties from space.  

11.3 Theoretical Description 

 
The current operational detection of clouds in SPOT VGT data relies on spectral threshold tests 

using the reflectance in the blue and SWIR bands (Lissens et al, 2000). Different threshold 

combinations are used to identify cloudy and clear pixels. A pixel which does not pass either test is 

declared uncertain. A snow mask is calculated using spectral threshold tests on the red and MIR 

channels combined with 3 spectral slope tests which exploit the lower scattering of snow in MIR 

and SWIR bands compared with clouds. A cloud shadow is finally added based on an estimation 

of a potential cloud shadow and a test on the NDVI of concerned pixels. 

Current MERIS cloud screening uses spectral thresholds on shortwave bands, complemented by 

spectral slope tests in order to recover bright land surface and snow (Santer, 1997). In the current 

reprocessing of MERIS these cloud and snow tests are significantly changed and improved 

(Brockmann and Santer, in preparation) by adding tests on the height of the scattering surface 

(based on the oxygen absorption measurements in MERIS band 11), and new tests for snow and 

ice detection using the MERIS Differential Snow Index (MDSI), based on the ratio of bands 13 

(865nm) and 14 (885nm). 

The AATSR cloud screening is also based primarily on threshold tests (Birks, 2007). The AATSR 

gross cloud test flags as cloudy those pixels whose brightness temperature in the 12 micron 

channel falls below a specified threshold. The small-scale spatial coherence test works by 

calculating the standard deviation of the 11 micron brightness temperature in a 3 x 3 group of 

pixels and comparing it with a threshold. If the standard deviation exceeds the threshold, the pixels 

in the group are flagged as cloudy. The Visible Channel Cloud Test can only be used in the 

daytime. The NDVI (Normalized Differential Vegetation Index) is defined as NDVI = (R87 – 

R67)/(R87 + R67), where R87 and R67 are the calibrated reflectances in the 0.87 and 0.67 micron 

channels respectively. Two indices are defined involving the 0.55 micron channel reflectance R55: 

NDI2 = (R67 – R55)/(R67 + R55). The method uses two of these indices, NDVI and NDI2, to de-

fine a two-dimensional classification space. In this space, pixels of different surface types form 

clusters, and by identifying into which cluster a pixel falls, the surface type at the pixel can be 

determined. The Snow Index (NDSI) test based uses the bands centred at 0.555 and 1.640 

microns respectively, NDSI = (R55 – R16)/(R55 + R16), where R16 is the calibrated reflectivity of 

the 1.6 micron channel. 

Both MERIS and AATSR cloud screening are not optimal because of missing spectral information 

in each of the single instrument (SWIR and TIR bands in MERIS, O2 and water vapour bands in 

AATRS). In the framework of the MERIS – AATSR synergy project an algorithm has been 

developed that combines the data from both instruments (Gomez-Chova, 2009). A thorough 

analysis has been undertaken on the information content w.r.t to cloud detection in both 

instruments, and a set of 19 features has been identified as optimal with respect to the number of 

features (which should be kept low) and information content. These features include the spectral 

reflectances of the two instruments, and a number of band combinations. The cloud screening 
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algorithm is a combination of feature extraction and supervised classification and spectral 

unmixing. The training vectors for the supervised classification have been obtained from a 

database of radiative transfer calculations. The results of the algorithm are a binary cloud mask 

resulting from the feature tests and a cloud abundance values (between 0 and 1) from the 

unmixing. These two values can be used by subsequent algorithms to decide if a pixel can be 

processed, or a final logic is applied to conclude on the pixel status. 

 

Figure 11-1: Overview of synergistic cloud classification algorithm 

 

A critical step for the synergistic use of MERIS and AATSR is the collocation of the products. Due 

to the high spatial and temporal dynamic of clouds, misalignment of the two data sets would 

impact the cloud retrieval. Figure 11-2 shows the steps included in the preprocessing of the data of 

the two instruments. 

 

Figure 11-2: Flowchart of the MERIS and AATSR synergy preprocessing module 

 
Neither of the single instrument algorithms discussed in the previous section is considered of 

sufficient quality for the purpose of the GlobAlbedo project. The MERIS and AATSR cloud 

screening algorithms have been criticised on the MERIS-AATSR user workshops, and also the 

SPOT VGT algorithm does not screen out sufficiently the doubtful cloudy pixels. The reason is that 
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the global Level 2 algorithms cannot be too severe in order to permit analysis of single Level 2 

products. On the contrary, for a Level 3 product such as the Albedo, a clear sky conservative (i.e. 

severe cloud screening) approach is required. Even a small number of undetected clouds can 

significantly impact the final albedo product. This has been demonstrated in the MERIS Land 

Albedo and the Globcover projects. 

The synergistic method of Gomez-Chova is a significant improvement. It exploits optimally all 

features available in both instruments and combines these in a non-linear, self trained 

mathematical way. The comparison shown in the MERIS-AATSR-Synergy Project demonstrates 

the improvements compared to the standard MERIS and AATSR algorithms. 

However, for the Globalbedo a synergistic use of MERIS and AATSR is not possible because of 

(1) the limitation of AATSR to the center of the MERIS swath, thus not providing data for half of the 

MERIS swath and (2) the overall design of the processing architecture which does not foresee 

multi-sensor processing at this stage. The latter point could of course be resolved, however, point 

(1) still remains valid. 

In conclusion the Globalbedo pixel classification will be a unique method, adapting the principles 

and mathematical implementation of the Gomez-Chova approach, but tailored to the features 

provided by the three instruments, each treated separately.  

In a first step the features will be combined in a logical order of a sequence of threshold tests, but 

working on and resulting in probability values between [0 … 1]. The combination will be done by 

arithmetic operations, addition and multiplication. This extends the Boolean logic into a 

probabilistic space. If tests result in the extreme 0 and 1, the probabilistic calculations are identical 

with the Boolean expressions. 

In a later step, when a large number of products are available from the Globalbedo project and 

processed with the first version of the pixel identification processor, the data can be used to collect 

a large number of clear and cloudy pixel, in order to implement the self-learning classifiers on the 

features, as described by Gomez-Chova. 

11.4  

11.5 Practical considerations 

11.5.1 Overall Principles 

The GA pixel identification is a unique classification for all three instruments considered: 

 ENVISAT MERIS 

 ENVISAT AATSR 

 SPOT Vegetation 
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The uniqueness consists of a certain set of features, which are calculated for each instrument and 

probabilistic combination of these features in order to calculate a set of pixel classification 

attributes. The implementation how the features are calculated is instrument specific. 

 

Figure 11-3: Unified Pixel Classification Scheme 

 

11.5.2 Probabilistic Arithmetic 

A feature is a probabilistic quantity with a value between 0 and 1, with the following meaning: 

Value Meaning 

0 the feature is definitively not 

true 

0.5 status of the feature not known 

1 feature is definitively true 

Table 11-1: Definition of values for classification features. 

 

Features are combined by simple arithmetic averaging. Let’s assume, as an example, two 

features, f1 and f2, which do have no dependency from each other, and both being an indication 

that a third feature, f3, is true. Then, f3 is the average of f1 and f2: 

f3 = (f1 + f2) / 2 

…

feature 1

feature 2

feature N

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

…

feature 1

feature 2

feature N

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

MERIS

AATSR

VGT

Probabilistic

Combination

thres-

hold 1

thres-

hold 2

thres-

hold K

thres-

hold 1

thres-

hold 2

thres-

hold K

attribute 1

attribute 2

attribute M

attribute 3

…

attribute 1

attribute 2

attribute M

attribute 3

…

MERIS AATSR

VGT

MERIS AATSR

VGT

Classification



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 55 of 313 

As a first example let’s assume the case where we are 100% sure that both f1 and f2 are true, i.e. 

f1=f2=1.0 then also f3=1.0. Another example is when we are 100% about f1, but less sure about 

f2, let’s say f2= 0.8. Then the resulting probability of f3 is f3=0.9. When don’t know anything about 

f1, i.e. f1=0.5 but are sure that f2 is false, i.e. f2=0, then f3=0.25, i.e. quite likely that it is false. If 

f1=0 and f2=1, i.e. a contradiction, then f3=0.5, i.e. we can’t say if it is true or false. 

The introduction of the probability scale [0 … 1] has further the advantage that it enable decoupling 

of feature values from the instruments. It doesn’t matter how a physical quantity is derived 

because it will be mapped to the interval [0 … 1]. For example, the brightness feature will be 

calculated from top of atmosphere radiances in the case of MERIS, whereas it will be calculated 

from reflectances in the case of VGT. These are different physical quantities, but they are both 

scaled to [0 … 1]. 

The scaling from a physical quantity, such as radiance or temperature, to a probability value may 

include a non-linear mapping. This can express the (un-)certainty that we have in value ranges in 

the physical data space.  For example, very low temperatures have a very high probability to be a 

cloud, whereas above a certain temperature value the probability decreases exponentially. 

Not every feature can be calculated for every instrument. In such cases the feature value is 

constant equal to 0.5. This convention allow to formulate the logical combination of features even if 

a feature is not available for a certain instrument, and hence the logical combination can be 

formulated instrument independently. 

11.5.3 Features 

The following features are used in the probabilistic combination, and how they are calculated from 

each instrument. 

Feature Explanation 

Pressure Indicating a high altitude from where the photons are scattered. Can be 
derived from measurements in gasous absorption bands, e.g. O2A or 
water vapour 

NDVI A high vegetation index is an indication of a (semi-) transparent 
atmosphere 

NDSI The NDSI is a meaningful quantity only above bright surfaces. Then it 
can be used to separate snow/ice from clouds 

White A bright and spectrally flat signal; can be a cloud or snow/ice 

Spectral 
Flatness 

A spectrally flat signal; The colour can be anything from black over grey 
to white. 

Temperature Temperature of the emitting surface; clouds can be very cold. 
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Bright Brightness of the scattering surface 

Glint Risk The glint risk can be calculated from the observation geometry and wind 
speed, assuming a certain wave distribution (e.g. Cox and Munk). Glint 
and clouds are hardly separable and hence it is useful to identify glint 
risk in addition with the cloud/water classification. 

Radiometric 
Land Value 

A classification of the surface type as land, provided that the pixel is 
clear and the measurement can be used to assess the surface type. 

Radiometric 
Water Value 

A classification of the surface type as water, provided that the pixel is 
clear and the measurement can be used to assess the surface type. 

A priori Land 
Value 

Classification of the pixel using a static background map and the 
geolocation of the pixel. 

A priori Water 
Value 

Classification of the pixel using a static background map and the 
geolocation of the pixel. 

11.5.3.1 Feature Definition for MERIS 

The index used in array notation below is starting with 0. 

 

Feature MERIS Comment 

Pressure if (isLand()) { 

   press_value = (pbaro - p1)/1000.0; 

} else if (isWater()) { 

   press_value =(pbaro - 

pscatt)/1000.0; 

}  

p1 and pscatt are 
apparent pressure 
products, defined in 
dedicated ATBDs from 
R. Santer, developed 
within the ESA O2 
project. pbaro is the 
barometric pressure. 

NDVI ndvi_value =  

(brr[b753]-brr[b620])/ 

(brr[b753]+brr[b620] 

brr is the reflectance 
corrected for gaseous 
absorption and 
Rayleigh scattering 

NDSI ndsi_value = 

brr[b865]-brr[b885]) / 

(brr[b865]+brr[b885] 

 

White if 

(brightValue()>BRIGHT_FOR_WHITE_THRES

H) { 
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white_value=spectralFlatnessValue(); 

}  else { 

   white_value = 0; 

} 

Spectral 
Flatness 

slope0 = spectralSlope(refl[490], 

refl[412]) 

slope1 = spectralSlope(refl[560], 

refl[620]) 

slope2 = spectralSlope(refl[665], 

refl[753]) 

 

spectralFlatness = 1.0f - 

Math.abs(1000.0 * (slope0 + slope1 + 

slope2) / 3.0); 

 

Temperatur
e 

0.5  

Bright bright_value =  

brr[b442] /(6.0 * brr442Thresh) 

brr442Thresh is a 
value read from a LUT; 
the LUT is a theoretical 
maximal reflectance for 
a given geometry and 
a bright land surface. It 
has been calculated by 
R. Santer and is 
available from the 
auxiliary data of the 
MERIS operational 
processor. 

Glint Risk Shall be calculated from geometry and wind speed 
from tie points. Not available in current IDEPIX 
version 

currently set to FALSE 

Radiometric 
Land Value 

if { 

  refl[b753] >= refl[620] && 

refl[620] > refl620_Land_Thresh 

} 

  radiom_land_value = 1.0 

in case of cloudy pixel: 
radiom_land_value 

= 0.5 
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} else { 

  radiom_land_value = 0.5 

} 

Radiometric 
Water 
Value 

if { 

  refl[b753] < refl[620] && refl[620] 

< refl620_Land_Thresh 

} 

  radiom_water_value = 1.0 

} else { 

  value = 0.5 

} 

in case of cloudy pixel: 
radiom_water_valu

e = 0.5 

A priori 
Land Value 

if (l1FlagLand) { 

   return 1.0f; 

} else { 

   return 0.0f; 

} 

 

A priori 
Water 
Value 

if (!l1FlagLand) { 

   return 1.0f; 

} else { 

   return 0.0f; 

} 

 

11.5.3.2 Feature Definition for AATSR 

All measurements are taken from the nadir observation.  

 

Feature AATSR Comment 

Pressure 0.5  

NDVI ndvi_value =  

(refl[870]–refl[670])/(refl[870]+refl[670]) 

 

NDSI ndsi_value =  

(refl[870]–refl[1600])/(refl[870]+refl[1600] 
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White if (brightValue()>BRIGHT_FOR_WHITE_THRESH) { 

   return spectralFlatnessValue(); 

} else { 

   return 0f; 

} 

 

Spectral 
Flatness 

slope0 = spectalSlope(refl[555], refl[670]) 

slope1 = spectalSlope(refl[670], refl[870]) 

 

spectralFlatness = 1.0f - Math.abs(10.0 * 

(slope0 + slope1)); 

 

Temperature temperature_value = bt[btemp1200]  

Bright bright_value = (refl[555] + refl[670] + 

refl[870])/3 

 

Glint Risk 0.5  

Radiometric 
Land Value 

0.5  

Radiometric 
Water Value 

0.5  

A priori Land 
Value 

if (l1FlagLand) { 

   return 1.0f; 

} else { 

   return 0.0f; 

} 

 

A priori Water 
Value 

if (!l1FlagLand) { 

   return 1.0f; 

} else { 

   return 0.0f; 

} 

 

 

Sea-ice Filter1 
value 

if (ABS((btemp[370]-btemp[1100])/btemp[370]) < 

SEAICE_FILTER1_THRESH) { 
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   return 1.0; 

} else { 

   return 0.0; 

} 

Sea-ice Filter2 
value 

if (ABS((btemp[370]-btemp[1200])/btemp[370]) < 

SEAICE_FILTER2_THRESH) { 

   return 1.0; 

} else { 

   return 0.0; 

} 

 

Sea-ice Filter3 
value 

if (ABS((refl[870]-refl[1600])/refl[870]) > 

SEAICE_FILTER3_THRESH) { 

   return 1.0; 

} else { 

   return 0.0; 

} 

 

Sea-ice Filter4 
value 

if (ABS((refl[870]-refl[670])/refl[870]) < 

SEAICE_FILTER4_THRESH) { 

   return 1.0; 

} else { 

   return 0.0; 

} 

 

Sea-ice Filter5 
value 

if (ABS((refl[670]-refl550])/refl[670]) < 

SEAICE_FILTER5_THRESH) { 

   return 1.0; 

} else { 

   return 0.0; 

} 

 

Sea-ice IR 
value 

if (refl[1600] < SEAICE_IR_THRESH) { 

   return 1.0; 

} else { 

   return 0.0; 

} 
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11.5.3.3 Feature Definition for VGT 

refl[0] … reflectance in band 0 at 450nm 

refl[1] … reflectance in band 2 at 645nm 

refl[2] … reflectance in band 3 at 835nm 

refl[3] … reflectance in band MIR at 1.6nm 

 

Feature VGT Comment 

Pressure 0.5  

NDVI ndvi_value = (refl[2] - refl[1])/ 

(refl[2] + refl[1] 

 

NDSI ndsi_value = refl[2] - refl[3])/ 

(refl[2] + refl[3]) 

 

White if 

(brightValue()>BRIGHT_FOR_WHITE_THRESH) 

{ 

   return spectralFlatnessValue(); 

} else { 

   return 0f; 

} 

The spectral 
flatness gives a high 
value even if the 
spectrum is black. 
In order to be an 
indicator for white, a 
minimum brightness 
is required. 

Spectral 
Flatness 

slope0 = spectralSlope(refl[0], 

refl[1]) 

slope1 = spectralSlope(refl[1], 

refl[2]) 

 

spectralFlatness = 1.0f - 

Math.abs(1000.0 * (slope0 + slope1)); 

 

Temperature 0.5  

Bright if (isLand()) { 

   return (refl[0] + refl[1])/2.0f; 

} else if (isWater()) { 

   return (refl[1] + refl[2]); 

} else { 
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   return (refl[0] + refl[1])/2.0f; 

} 

Glint Risk isWater() && isCloud() && 

   spectralSlope(refl[0], refl[1], 450, 

645) > GLINT_THRESH) 

 

Radiometric 
Land Value 

if (refl[2] > refl[1] &&  

refl[2] > REFL835_LAND_THRESH) { 

   radiom_land_value = 1.0; 

} else if ( 

refl[2] > REFL835_LAND_THRESH) { 

   radiom_land_value = 0.75f; 

} else { 

   radiom_land_value = 0.25; 

} 

in case of cloudy 
pixel: 
radiom_land_value 
= 0.5 

Radiometric 
Water Value 

if (refl[0] > refl[1] &&  

refl[1] > refl[2] &&  

refl[2]<REFL835_WATER_THRESH) { 

   value=1.0; 

} else { 

   value = 0.25; 

}  

in case of cloudy 
pixel: 
radiom_water_value 
= 0.5 

A priori Land 
Value 

if (smLand) { 

   return 1.0f; 

} else { 

   return 0.0f; 

} 

 

A priori 
Water Value 

if (!smLand) { 

   return 1.0f; 

} else { 

   return 0.0f; 

} 
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11.5.4 Processing Logic 

The following classification attributes (binary values, also named flags) are derived from the 

features with given logic. In general, this logic is no longer instrument dependent (exceptions 

explained below). 

Classification 
attribute 

Definition Comment 

isCloud return (whiteValue() + 

brightValue() + 

pressureValue() + 

temperatureValue() > 

CLOUD_THRESH && 

!isClearSnow()) 

The final binary cloud flag. 
A pixel is either Cloud, 
ClearLand or 
ClearWater.or ClearSnow 

isClearLand if (radiometricLandValue() != 

0.5) { 

   landValue = 

radiometricLandValue(); 

} else if (aPrioriLandValue() 

> 0.5) { 

   landValue = 

aPrioriLandValue(); 

} else { 

   return false;  

 

// this means: if we have no 

information about land, we 

return isClearLand = false 

 

} 

return (!isCloud() && 

landValue > LAND_THRESH) 

If a radiometric land value 
is available, i.e. it is not 
the uncertainty value of 
0.5, than this is used in the 
subsequent test. 
Otherwsise the a priori 
land value is used in the 
test. 

The test simply compares 
the value with a threshold. 
The choice of the 
threshold depends on the 
user. If he wants to be 
really sure he should use 
a value close to 1. 

isClearWater if (radiometricWaterValue() 

!=0.5) { 

   waterValue = 

radiometricWaterValue(); 

} else if (aPrioriWaterValue() 

> 0.5) { 

   waterValue = 

same logic as for the 
ClearLand test 
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aPrioriWaterValue(); 

} else { 

   return false;  

 

// this means: if we have no 

information about water, we 

return isClearWater = false 

 

} 

return (!isCloud() && 

waterValue > WATER_THRESH); 

isClearSnow return (isBrightWhite() && 

ndsiValue() > NDSI_THRESH) 

isBrightWhite is defined 
below 

isSeaIce 

(MERIS/AATSR)3 

return (isWater() && 

isBright(MERIS) && 

SeaiceIRValue(AATSR) == 1.0) 

 

isSeaIce 

(AATSR)4 

return (isWater() && 

SeaiceFilter1Value() == 1.0 && 

SeaiceFilter2Value() == 1.0 && 

SeaiceFilter3Value() == 1.0 && 

SeaiceFilter4Value() == 1.0 && 

SeaiceFilter5Value() == 1.0) 

 

isBrightWhite return (whiteValue() + 

brightValue() > 

BRIGHTWHITE_THRESH) 

A pixel that has one of the 
two characteristics, bright 
or white, has a potential to 
be cloudy. The stronger 
both features are the 
higher the probability. 

isLand return (aPrioriLandValue() > 

LAND_THRESH) 

This is the surface type of 

                                            
3 Synergetic approach, currently applicable for MERIS/AATSR only 

4 Approach following Istomina et a. (2010), applicable for AATSR only 
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isWater return (aPrioriWaterValue() > 

WATER_THRESH) 

the pixel, regardless if it is 
snow covered or if a cloud 
is above during 
measurement. 

isBright return (brightValue() > 

BRIGHT_THRESH) 

These tests map the real 
values of the features to 
binary flags 

isWhite return (whiteValue() > 

WHITE_THRESH) 

 

isCold return (temperatureValue > 

TEMPERATURE_THRESH) 

 

isVegRisk return (ndviValue() > 

NDVI_THRESH) 

 

isGlintRisk return (glintRiskValue > 

GLINT_RISK_THRESH) 

 

isHigh return (pressureValue() > 

PRESSURE_THRESH) 

 

11.5.5 Thresholds 

The following table lists the nominal values for the scalar thresholds which are being used 
in the current version of Idepix, and which may be sensor-dependent. It should be noted 
that these values are subject to tuning in future Idepix versions, depending on potential 
improvements of the feature definitions which may result from more advanced validation 
schemes or new validation resources.  

 

Threshold Value 

 MERIS AATSR VGT 

BRIGHTWHITE_THRESH 1.5 0.65 0.65 

NDSI_THRESH 0.68 0.5 0.5 

PRESSURE_THRESH 0.9 0.9 0.9 

CLOUD_THRESH 1.65 1.3 1.65 

UNCERTAINTY_VALUE 0.5; 0.5 0.5 

LAND_THRESH 0.9 0.9 0.9 

WATER_THRESH 0.9 0.9 0.9 

BRIGHT_THRESH 0.25 0.2 0.3 
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WHITE_THRESH 0.9 0.9 0.5 

BRIGHT_FOR_WHITE_THRESH 0.4 0.2 0.2 

NDVI_THRESH 0.7 0.4 0.4 

TEMPERATURE_THRESH 0.9 0.6 0.9 

REFL835_LAND_THRESH n.a n.a 0.15 

REFL835_WATER_THRESH n.a n.a 0.1 

GLINT_THRESH n.a n.a. 0.000365 

SEAICE_FILTER1_THRESH n.a. 0.03 n.a. 

SEAICE_FILTER1_THRESH n.a. 0.03 n.a. 

SEAICE_FILTER1_THRESH n.a. 0.8 n.a. 

SEAICE_FILTER1_THRESH n.a. 0.1 n.a. 

SEAICE_FILTER1_THRESH n.a. 0.4 n.a. 

SEAICE_IR_THRESH n.a. 2.0 n.a. 
 

 

12 Error budget estimates 

The errors of the classification classes are automatically calculated by the probabilistic 
arithmetic. 

13 Assumptions and Limitations 

None. 
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15 Introduction 

15.1 Purpose and Scope of Document  

The purpose of this document is to provide the background and theoretical justification for 

the algorithms employed to estimate aerosol in the ESA GlobAlbedo product. GlobAlbedo 

sets out to create a 15 year time series by employing ATSR-2, SPOT4 VEGETATION and 

SPOT5 VEGETATION2 as well as AATSR and MERIS. Aerosol estimates are required for 

atmospheric correction of all L2 TOA to obtain accurate surface directional reflectance 

data and their uncertainties.  

The primary features of the algorithms developed are: 

 Aerosol estimates for all instruments are made using a common set of aerosol 

models and radiative transfer framework; 

 The algorithms avoid the use of a priori assumptions on surface albedo; 

 Separate constraints are developed to exploit the characteristics of the instruments 

used for GlobAlbedo (ATSR-2 and  AATSR, SPOT VGT, and MERIS);  

 We give a per-retrieval estimate of uncertainty in aerosol to allow propagation of 

uncertainty through the processing chain to the final albedo product. 

15.2 Context 

The GlobAlbedo project (RD-1) will develop a broadband albedo map of the entire Earth’s 

land surface (snow and snow-free), which is required for use in climate modelling and 

research. For estimation of albedo satellite datasets need to be processed from top-of-

atmosphere (TOA) observations to obtain surface spectral bidirectional reflectance factors 

(BRFs), also termed surface directional reflectance (SDR). The initial satellite 

measurements are strongly affected by molecular and aerosol scattering, and absorption 

by ozone and water vapour. The high spatial and temporal variability of aerosol scattering 

typically represents the greatest uncertainty in derivation of surface reflectance over land. 

While climatology values for aerosol optical thickness (AOT) have been used, for example 

in processing of SPOT VGT (Berthelot and Dedieu, 2000), derivation of aerosol properties 

from the satellite data at the time of overpass is needed for accurate correction.  
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16 Applicable and Reference documents 

16.1.1 Applicable documents 

 Doc. Number Title 

AD-1 ECSS-E-ST-40C European Cooperation for Space Standardization:  Space 
Engineering Software,  (6 March 2009), available from 
http://www.ecss.nl 

   

16.1.2 Reference Documents 

 Doc. Number Title 

RD-1 EOEP-DUEP-

EOPS-SW-09-0001 

 

DUE GlobAlbedo Project Statement of Work, Issue 1, 
Revision 0 (6 April 2009) 

 

16.2 Definitions and Abbreviations 

(A)ATSR (Advanced) Along Track Scanning Radiometer 

AOT Aerosol Optical Thickness  

ATBD Algorithm Theoretical Basis Document  

BEAM  Basic Envisat Tool for AATSR & MERIS  

BRDF Bidirectional Reflectance Distribution Function  

BRF Bidirectional Reflectance Factor  

CWV Columnar Water Vapour 

DOM Dark Object Methods 

ELEV Surface elevation above sea level 

ENVISAT Environment Satellite (http://envisat.esa.int)  

ERS European Remote Sensing satellite  

ESA European Space Agency  
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L1, L2 Level 1, Level 2  

MERIS Medium Resolution Imaging Spectrometer Instrument   

MODIS Moderate Resolution Imaging Spectroradiometer  

MOMO Matrix Operator Model 

NDVI Normalised Differential Vegetation Index 

NIR Near InfraRed  

RAA Relative Azimuth Angle 

RR Reduced Resolution 

RTC Radiative Transfer Code  

SDR Surface Directional Reflectance 

SPOT Satellite Pour l’Observation de la Terre  

SRF Spectral Response Function 

SSA Single Scattering Albedo 

SWIR Short Wave Infra Red  

SZA Solar Zenith Angle 

TIR Thermal InfraRed  

TOA Top of Atmosphere  

TOC Top of Canopy 

VGT VEGETATION (sensor) onboard the SPOT satellite 

VIS Visible broadband range (400-700 nm) 

VNIR Visible Near Infrared 

VZA View Zenith Angle 

 

 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 84 of 313 

17 Instrument characteristics 

This section outlines the principal characteristics of the instruments used for GlobAlbedo 

processing. Five instruments are used to span the period 1995-2010. These are the 

ATSR-2 instrument on board ERS-2 (1995-), succeeded by the Envisat platform from 

2002 including both AATSR and MERIS. In addition, the project uses the SPOT VGT 

sensor on SPOT 4 (1998-) and SPOT VGT2 on SPOT 5 (2002-).  The instrument 

characteristics and channels are presented in Tables 1 and 2 respectively.  

17.1 ATSR-2 and AATSR 

The AATSR instrument is a scanning radiometer, sensing at thermal infrared, reflected 

infra-red and visible wavelengths with two ~500 km wide conical swaths, with 555 pixels 

across the nadir swath and 371 pixels across the forward swath. The specifications of 

AATSR and ATSR-2 are the same, except that the ATSR-2 instrument employed a 

reduced swath of visible channels over and near oceans due to data transmission 

restrictions. The swath covers approximately half of the MERIS swath. The nominal pixel 

size is 1 km2 at the centre of the nadir swath and 1.5 km2 at the centre of the forward 

swath. For the AATSR level 1 products the forward pixels are sampled to 1km in order to 

be the same size as the nadir pixels.  This unique feature provides two views of the 

surface and improves the capacity for atmospheric correction and enables observations of 

the ocean surface under a solar zenith angle of ~55° in the forward direction. The first 3 

bands are common with MERIS bands, however, the bandwidth of the AATSR bands is 

significantly larger. The channels at 1.6µm and 3.7µm are suited to correct for the impact 

of aerosols, especially above coastal waters, since at this spectral range there is nearly no 

backscattering of solar radiation emanating from the water body.  For land aerosol 

retrieval, the bands at shorter wavelengths (550nm and 665nm) where aerosol scattering 

is greater with respect to surface scattering are important.  

17.2 MERIS 

MERIS is an imaging radiometer with 15 programmable spectral bands in the range 400 – 

1050 nm. The operational band setting positions give 15 bands between 412.5 nm and  



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 85 of 313 

Table 17-1: VGT, MERIS and (A)ATSR, MERIS instrument characteristics. 

 VGT MERIS AATSR 

Bands 
4 

15 7 

Swath Width 
~2250km 1150 km ~500 km 

Spatial Resolution 
1.15km FR: ~300m 

RR: 1.3km 

Forward: 1.3km 

Nadir 1km 

Range of view 

zenith angles 
0-55° 0-45° Forward: 50-60° 

Nadir:  0-25° 

 

Table 17-2: Channels on the VGT, MERIS and (A)ATSR, MERIS instruments. 

VGT MERIS AATSR 

Channel Wave-

length 

(nm) 

Band-

width 

(nm) 

Channel Wave-

length 

(nm) 

Band-

width 

(nm) 

Channel Wave-

length 

(nm) 

Band-

width 

(nm) 

 

1 

 

 

 

 

2 
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900 nm, including one narrow band at 761.4 nm in the Oxygen A absorption band, and 5 

bands in the near infrared for the atmospheric correction over the ocean. Three of these 

bands are dedicated to the retrieval of aerosol properties. The MERIS swath covers 1150 

km across-track. The original pixel size is 260 by 290 m in nadir and increases towards 

the edge of the swath. Onboard these full resolution (FR) data are spatially integrated to 

the reduced resolution (RR) pixel size, which is equivalent to the size of 4 by 4 full 

resolution pixels. During processing the FR data are resampled to an equal grid with a 

pixel a size of 300 by 300 m, and the reduced resolution (RR) data with 1.2 by 1.2 km 

pixel size.  For AOT and surface reflectance retrieval only the MERIS RR products will be 

used.  

17.3 SPOT VEGETATION 

The first SPOT VGT sensor was launched on SPOT4 in 1998, and succeeded by VGT2, 

on SPOT5 in 2002. The instrument has a wide swath width, allowing near‐daily collection 

of global data, at a spatial Resolution of ~1.15 km. While there are a small number of 

bands (4), they spanning a wide spectral range and the sensor swath width allows more 

frequent observation the than the other instruments. Characteristics are summarised in 

Table 17-1 and Table 17-2. 
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18 Theoretical background for aerosol retrieval 

For global satellite data processing, atmospheric correction is normally performed in two 

stages. In the first step, the atmospheric properties are determined at the time of satellite 

overpass. Secondly, a radiative transfer model of the atmosphere is inverted to estimate 

surface reflectance, accounting for the atmospheric scattering and absorption. It is normal 

to use a pre-calculated look-up table (LUT) for this stage, to allow rapid estimation of 

surface reflectance on a per-pixel basis (Rahman and Dedieu, 1994; Grey et al 2006a). Of 

these two stages, the estimation of atmospheric properties is the most challenging and 

greater source of error (Vermote and Kotchenova, 2008). While vicarious correction 

techniques, such as the empirical line method, have been applied to individual sites as an 

extension of calibration, this requires in situ measurement of sample surface reflectance.  

 The high spatial and temporal variability of aerosol scattering typically represents the 

greatest uncertainty in derivation of surface reflectance over land. While climatology 

values for AOT have been used, for example in processing of SPOT VGT (Berthelot and 

Dedieu, 2000), derivation of aerosol properties from the satellite data at the time of 

overpass is needed for accurate correction. The parameters required to model aerosol 

radiative effects are AOT for a given reference wavelength, and aerosol model, describing 

spectral dependence of ATD, single scattering albedo, and phase function.  

 In general, it is more challenging to retrieve required aerosol properties over the land than 

the ocean.  This is because the scattering from the land surface tends to dominate the 

satellite signal making it difficult to discern the atmospheric scattering contribution, 

particularly over bright surfaces. In addition, obtaining an accurate model of the land 

surface is further complicated because bi-directional reflectance is highly variable, both 

spatially and temporally. 

Currently, atmospheric radiative transfer (RT) codes allow retrieval of surface reflectance 

with a high degree of precision for a known atmospheric profile, with theoretical error 

typically <0.01 in surface reflectance (Fischer and Grassl, 1984; Kotchenova et al., 2006). 

This enables both forward simulation of satellite radiances, and inversion of such models 

to estimate surface reflectance given a set of top-of-atmosphere (TOA) radiances.  Over 
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land, the key problem in correction of surface reflectance for aerosol effects lies in 

simultaneous estimation of aerosol at the time of acquisition.  

18.1 Aerosol optical depth and scattering models 

The parameters required to model aerosol radiative effects are aerosol optical depth 

(AOT) for a given reference wavelength, its spectral dependence, which may be defined 

by the Angstrom coefficient, single scattering albedo, and phase function. These 

properties are closely related to aerosol amount, composition and size distribution. The 

net effect of aerosol on climate forcing depends on its optical properties (absorption and 

scattering) (Mishchenko et al., 2007). To date, most retrieval schemes return spatially 

varying estimates of AOT as the main parameter, and some additionally return information 

on aerosol size distribution (e.g. Remer et al., 2005) or the related property of Angstrom 

coefficient (e.g. Veefkind et al 1999). Recent methods have explored search for the most 

probable candidate aerosol model from a limited database, based on fit to the 

observations, with further aerosol properties defined by this model (North 2002b; Holzer-

Popp et al., 2008; Diner et al., 2009).

 

 

18.2 Single-view methods 

Most currently available aerosol retrievals are based on data from instruments with a 

single sampling of the angular domain. These algorithms are based on different 

assumptions, depending on available spectral sampling. In general the retrievals need to 

use known wavelength dependence of surface reflectance in order to provide information 

on the aerosol. The separation of the surface contribution is always based on a priori 

knowledge about the spectral properties of the surface. A number of assumptions have 

proven successful: 

 Identification of dark targets: where it is possible to identify targets of dark dense 

vegetation (DDV) with known spectral properties, this may be used to derive 

aerosol path radiance over these targets (Kaufman and Sendra (1988)). 

Operational algorithms have been developed for MODIS (Remer et al., 2005), and 

MERIS (Santer et al., 1999; Santer et al., 2007) on this basis, amongst other 

instruments. For MERIS, the vegetation index ARVI (Kaufman et al., 1992) is used 

to identify vegetation. However, accurate application is limited to regions where 
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such targets are available at the appropriate spatial resolution (i.e. oceans and dark 

dense vegetation), so we must employ interpolation of the aerosol field to derive 

values at image points suitable for atmospheric correction. Recent results suggest 

improvement of this method is possible using calibration of the spectral relationship 

over a range of representative land covers, corresponding to selected AERONET 

sites (Levy et al., 2007) allowing correction for view-angle effects on surface 

spectra and generalisation to brighter surfaces (Hsu et al., 2004). 

 

 Spectral mixing: Independently measured spectra of vegetation and bare soil are 

taken to construct a basis and the actual surface spectrum is assumed to be a 

linear combination of both, depending on vegetation cover. The algorithm described 

by von Hoyningen-Huene et al. (2003), bases the mixture of soil and vegetation 

spectra on the measured NDVI. The thus defined surface spectrum is then only 

allowed for scaling. An alternate algorithm developed by Guanter et al. (2007) uses 

mainly the assumption that aerosol is spatially more homogeneous than surface 

reflectance. Therefore the algorithm searches locally for pixels with the most and 

the least vegetation cover (darkest and brightest pixels) and assumes the 

atmospheric information to be constant. This allows the determination of the 

aerosol content.  

 

 A priori assumptions based on existence of an independent estimate of surface 

reflectance from other instruments: For example Thomas et al. (2009) used MODIS 

estimates of surface reflectance to estimate aerosol from (A)ATSR instruments. 

While potentially allowing spatially continuous mapping of aerosol, important 

limitations are the reliance on the existence of a recent reflectance map from 

another instrument which has already been successfully corrected for atmospheric 

scattering, as well as including errors due to different temporal, angular and 

spectral sampling.  

While potentially offering accurate retrieval where the target reflectance matches well with 

modelled spectrum, the single spectral measurement can give information on aerosol path 
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radiance only, and not on phase function. Generally these methods, are suitable only for 

dark targets with relatively low spectral variability, so give a sparse estimate of optical 

depth, and are normally inappropriate for bright surfaces such as arid or snow covered 

land.  

18.3 Multi-temporal methods 

Related to single view retrieval methods are those which allow retrieval from time series, 

assuming greater stability of land surface reflectance compared to aerosol (Lyapustin, A.  

and  Wang (2009)). The time series allows use of recent reflectance retrievals as a prior in 

inversion.  Such techniques are particularly relevant where high temporal sampling is 

available, such as from geostationary instruments, for example the method by Govaerts et 

al., (2010) using optimal estimation theory and including a model of the effects of solar 

angle change on land surface scattering. 

18.4 Multiple view-angle (MVA) methods 

While spectral methods may produce very good results in regions where the assumptions 

are fulfilled, global aerosol retrievals show a number of uncertainties due to the large 

variability in spectral surface properties. Use of multiple view-angle imagery allows an 

additional constraint to be placed, since the same area of surface is viewed through 

different atmospheric path lengths. The concept was pioneered by ATSR on ERS-2, 

originally for atmospheric correction of SST for the effects of water vapour  (Barton et al., 

1989). In addition, there is scope to use the increased angular sampling of the land 

surface to further constrain retrieval of albedo and vegetation biophysical parameters 

(Diner et al., 1999). Several instruments have been designed to exploit the ability of MVA 

techniques for aerosol retrieval, including MISR, using 9 cameras tilted at angles in the 

range ± 70.5° along-track, and POLDER, which employs a CCD array to sample 

continuousl9 at ± 43° along-track (Martonchik  et al., 1998; Leroy et al., 1997).  

For the ATSR instrument series, 2 view directions are available, at approximately nadir 

and 55° along-track requires an approach  which exploits the similarity of the surface 

anisotropy across wavelengths. This is due to the fact the anisotropy is dominated by 

geometric shadowing effects, which are wavelength invariant. However other effects 

contribute to anisotropy; the differential viewing of  canopy/understory surfaces with view 
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angle, and the degree of multiple scattering, which tends to reduce anisotropy over bright 

surfaces. A simple approximation assuming spectral invariance of the BRDF (Mackay et 

al., 1999; Flowerdew and Haigh, 1996). has been used in inversion schemes (Veefkind et 

al., 2000) to provide a successful retrieval of aerosol. The method has developed further 

to include enhanced modelling of the spectral variation of anisotropy (North et al., 1999) to 

give an operational method from which global retrieval of aerosol properties has been 

achieved using the ESA Grid Processing on Demand (GPOD) system (North 2002b; Grey 

et al., 2006a,b). Validation by comparison with AERONET shows robust retrieval over all 

land surfaces, including deserts (Grey et al., 2006b; Bevan et al., 2009). The method has 

also recently been applied to estimation of aerosol from the CHRIS PROBA instrument, by 

exploiting the ability of the instrument to acquire 5 views of the target by satellite pointing 

(Davies et al., 2010). The use of a cross-spectral constraint on surface anisotropy has also 

recently been incorporated into the MSR processing algorithm (Diner et al., 2005). 

The principal advantage of an MVA approach is that no a priori information of the surface 

spectrum is required and aerosol properties can be retrieved over all surface types, 

including bright deserts. Limitations of the angular approach are that the algorithms 

require accurate co-registration of the images acquired from multiple view angles. 

Normally aerosol is retrieved at a lower resolution than the pixel resolution, to decrease 

the effect of misregistration errors, for example at 18km for MISR and 8km for ATSR 

(Diner et al., 2009; North et al., 2002b), and the methods may be sensitive to undetected 

sub-pixel clouds (North et al., 1999). 

 

19 Algorithm overview 

19.1 General Overview of Scheme 

The problem is formulated as one of optimisation subject to constraint, which has been 

widely applied to atmospheric retrievals. Figure 1 illustrates the retrieval framework 

followed here. The two-stage optimization process is employed:  (1) Given a set of satellite 

TOA radiances, and an initial guess of atmospheric profile, we estimate the corresponding 

set of surface reflectances. (2) Testing of this set against a constraint results in an error 

metric, where a low value of this metric should correspond to a set of surface reflectances 
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(and hence atmospheric profile) which is realistic.  Step (1) is repeated with a refined 

atmospheric profile until convergence at an optimal solution. 

The algorithm components are therefore (i) design of an efficient and accurate scheme for 

deriving surface reflectance for known atmospheric profile, and (ii) formulation of 

constraints on the land surface reflectance suitable for the angular and spectral sampling 

of the instruments used ((A)ATSR, SPOT-VGT and MERIS). The method is applied to 

estimate aerosol at a more coarse spatial resolution (8 x 8 km) than the underlying surface 

reflectance, and a subsequent interpolation step is used to obtain per-pixel values. 

 

19.2 Pre-processing 

The pre-processing requirements for the algorithm are calibration of all instrument data to 

top of atmosphere reflectance, screening of cloud and water bodies, and, for (A)ATSR, 

registration of the two views. The cloud screening should be conservative as cloud 

contamination can lead to high errors in retrieval of AOT. The registration is generally of 

adequate quality for aerosol retrieval. However, for cloud, the flags provided with the 

instrument data were considered of insufficient quality for the purpose of the GlobAlbedo 

project. The pre-processing and pixel classification are discussed in the document 

GlobAlbedo_PixID_ATBD_V1.0 (2010). 
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Figure 19-1: Outline processing algorithm for retrieval of aerosol properties for GlobAlbedo 
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The retrieval of atmospheric aerosol requires a fast approximation of atmospheric radiative 

transfer, to relate TOA to surface reflectance for varying aerosol loading. Here we use the 

scheme developed under the GlobAlbedo for SDR and BBDR estimation; this is discussed 

fully in GlobAlbedo_BBDR_ATBD_V1.0 (2010), and here we give a brief summary of 

points relevant to aerosol estimation. 

For a given sensor waveband and atmospheric profile, the relationship between top of 

atmosphere reflectance  and surface directional reflectance 

   

Rl can be 

approximated by the equation: 

      (5.1) 

where Ratm,λ  denotes the atmospheric scattering term (TOA reflectance for zero surface 

reflectance), 

   

g l denotes atmospheric transmission for either sensor to ground or ground to 

sensor for waveband , and 

   

rl  denotes atmospheric  bi-hemispherical albedo with 

respect to the surface. The view and solar vectors are denoted by v and s respectively, 

while 

   

m v  and 

   

ms denote cosines of solar and view zenith.  

 

By rearranging (5.1), the surface reflectance is thus related to the TOA observations by 

    (5.2) 

 

The calculation is made efficient by pre-compilation of look-up tables for the coefficients 

Ratm,λ, 

   

rl and 

   

g l, defined for each instrument waveband accounting for the spectral 

response functions. During operation we use multidimensional piecewise linear 

interpolation to obtain the required atmospheric coefficients. The tables and include the 

effect of absorption and scattering by fixed gases, aerosols, ozone and water vapour. The 

6S code (Vermote et al., 1997) is used for calculation of transmittance terms, while the 6S 

code (Vermote et al., 1997) is used for calculation of transmittance terms, while the 

MOMO code (Fischer and Grassl, 1984; Fell and Fischer, 2001) is used for atmospheric 
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reflectance and albedo accounting for multiple scattering. No correction of adjacency 

effects was found to be necessary for the GlobAlbedo SDR product, as this is focused on 

land surfaces and the spatial resolution of the three instruments under consideration is 

comparable to the atmospheric point spread function. Although observations at differing 

view angles will recover a differing SDR value, the surface is approximated as Lambertian 

for the calculation of multiple scattering terms. 

19.4  Aerosol model set 

The six aerosol models described in Govaerts et al. (2010) and a continental model built 

up from the Optical Properties of Aerosols and Clouds (OPAC) aerosol model database 

(Hess et al., 1998) have been used for the generation of the LUTs. The optical properties 

of the seven models are summarised in Table 3. The six models from Govaerts et al. 

(2010) result from the clustering of a large data set of AERONET observations (Holben et 

al., 1998) according to the single scattering albedo and phase function of each 

observation. The aerosol models derived with this procedure represent combinations of 

absorbing and non-absorbing aerosol and of spherical and non-spherical particles. The 

single scattering albedo and phase function of the non-spherical models were calculated 

with a scattering code based on spheroid models (Dubovik et al., 2006), while the Mie 

code built-in in MOMO was used for the spherical models. The impact of the particular 

aerosol model on Ratm,λ is illustrated in Fig.1. The slope of the derivative of Ratm,λ with 

respect to AOD550 changes with the model, which shows that different values of AOD550  

would be retrieved by different aerosol models.  
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  Fine Mode Coarse Mode 

 Model rv σ Cv n(440nm) rv σ Cv n(440nm) 

Spherical Contin. I-80 0.021 2.2400 0.950 1.40-0.002i 0.471 2.510 0.050 1.53-0.008i 

ABSORB 0.155 0.404 0.083 1.46-0.018i 3.012 0.649 0.051 1.46-0.018i 

MODABS 0.221 0.497 0.094 1.42-0.009i 2.886 0.598 0.050 1.42-0.009i 

NONABS 0.179 0.426 0.101 1.42-0.006i 3.004 0.623 0.039 1.42-0.006i 

Non-
spherical 

SMARAD 0.145 0.500 0.037 1.50-0.005i 2.423 0.617 0.262 1.50-0.005i 

MEDRAD 0.172 0.636 0.033 1.48-0.005i 1.961 0.549 0.364 1.48-0.005i 

LARRAD 0.202 0.627 0.043 1.43-0.003i 1.978 0.527 0.521 1.43-0.003i 

Table 19-1: Properties of the aerosol models used. Each of the two modes 
compounding each aerosol model is defined by the volume median radius rv (µm), 
the radius standard deviation σ (µm), the volume Concentration Cv (µm, %for the 

Continental I-80 model) and the spectral refractive index n (provided at 440nm in the 
table for reference purposes). 

 

19.5  Constraints on surface reflectance 

To retrieve estimates of aerosol properties from measured satellite radiances, we need to 

solve the inverse problem to separate the atmospheric and surface scattering 

contributions to the observed signal.  This normally requires some assumptions to be 

made on the land surface brightness. Within the proposed framework, these assumptions 

are expressed as constraints defined by error of fit to a parameterized model describing 

the surface angular or spectral reflectance. For the single view instruments we apply 

constraints based on the dark object method (DOM), while for (A)ATSR we apply a 

multiple view-angle  (MVA) constraint. In principle further and multiple constraints can be 

employed within the inversion framework, and the method updated to include best 

available constraints 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 97 of 313 

 

(a)       (b) 

Figure 19-2: Ratm,λ as a function of the aerosol model. Ratm,λ in the MERIS band at 412nm is plotted as 
a function of AOD550 and the seven aerosol models in (a), while spectral Ratm,λ for the continental 
model is represented in (b). The reference input configuration is VZA=30◦, SZA=30◦, RAA=120◦, 
ELEV=200m. 

 

19.5.1  Multiple  View-Angle constraint ((A)ATSR) 

We have developed a method for simultaneous estimation of AOT and surface reflectance 

for data where at least two view angles are available, such as the AATSR (North et al., 

1999; North 2002; Grey et al., 2006a,b). Methods employing similar principals have also 

been developed for AATSR and other multi-view sensors, (Veefkind et al., 1999; Diner et 

al., 2005; Kokhanovsky et al., 2007). The principal advantage of this approach is that no a 

priori information of the surface is required and aerosol properties can be retrieved even 

over bright surfaces. In the case of multi-view-angle data, a constraint may be made on 

the angular variation of the land surface reflectance, governed by the BRDF, giving a 

corresponding error of fit. In particular, the angular variation is assumed to be 

approximately constant across wavelength, since the angular variation (i.e. shape of the 

surface bi-directional reflectance distribution) is due principally to geometric effects (e.g. 

shadowing) which are wavelength independent. This means that for AATSR, the ratio of 

surface reflectances at the nadir and off-nadir viewing angles (where the view zenith angle 

is 55°) is well correlated between bands. This avoids the need for assumptions on 

absolute surface brightness or spectral properties.  The method presented here differs 

from early approaches by using a more sophisticated surface model to account for some 
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spectral variation of the angular shape owing to the variation of the diffuse fraction of light 

with wavelength. 

Scattering of light by atmospheric aerosols tends is be greater at shorter wavelengths. It is 

important to model the fraction of diffuse to direct radiation since it influences the 

anisotropy of the surface. The anisotropy is reduced when the diffuse irradiance is high 

because the contrast between shadowed and sunlit surfaces decreases. Anisotropy is 

similarly dependent for bright targets owing to the multiple-scattering of light between the 

surface elements. The atmospheric scattering elements including aerosols and gas 

molecules are comparable in size to the wavelength of light at optical wavelengths. As a 

result, the effect of atmospheric scattering on the anisotropy will be a function of 

wavelength and the shape of the BRDF will vary. Taking these effects into account results 

is a physical model of spectral change with view angle ([North et al., 1999)] : 

       (5.3)                                                              

where )(1 lgwg -= , l is the wavelength, W is the viewing geometry (forward or nadir view in 

the cases of AATSR), modr modr

is the modelled bidirectional reflectance, g  is the fraction 

contributing to higher-order scattering and is fixed at 0.3, and D is the fraction of diffuse 

irradiance at the surface.   The model separates the angular effects of the surface into two 

components, a structural parameter v  that is dependent only on the viewing and 

illumination geometry, and the spectral parameter w, that is dependent only on the 

wavelength. The free parameters that we need to retrieve through model inversion are the 

four spectral parameters w and two angular parameters v.     

By inversion of (5.3), this model of surface scattering has been shown theoretically to lead 

to a tractable method which is potentially more robust than the simple assumption of 

angular invariance alone (North 1999).  The angular reflectance of a wide variety of 

natural land surfaces fits this simple model. In contrast, reflectance that is a mixture of 

atmospheric and surface scattering does not fit this model well. As a result, the model can 

be used to estimate the degree of atmospheric contamination for a particular set of 
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reflectance measurements and to find the atmospheric parameters which allow retrieval of 

a realistic surface reflectance.   

19.5.2 Dark object method (MERIS and VGT) 

When viewing from a single direction, we must rely on the spectral signature to distinguish 

aerosol from ground scattering. For a given set of surface reflectances derived by 

assuming a certain atmospheric profile, this may be expressed as an error based on the fit 

of the retrieved surface reflectance to the assumed target reflectance. This allows 

estimation retrieval of the atmospheric aerosol by optimal estimation. Where a target of 

approximately known reflectance can be identified, such as dense vegetation or a body of 

water, aerosol optical depth at the target location may be estimated on the basis of known 

correlation of ground reflectance at different wavelengths (Remer et al., 2005). The first 

stage in such schemes is the identification of dark pixels. One approach to identifying dark 

pixels is to calculate the Normalized Difference Vegetation Index (NDVI): 

 

   

NDVISC =
bRnir - aRred

Rnir - Rred

         (5.4) 

where Rnir and Rred are the TOA reflectances at wavebands for the instruments centred 

approximately on 865nm and 665nm respectively.  The coefficients a and b normalise for 

spectral differences between the instruments, and values are estimated in the 

accompanying ATBD GlobAlbedo_BBDR_ATBD_V1.0 (2010) for MERIS (a=1.0, b= 

0.999), AATSR (a=1.008, b=0.997) and VGT (a=1.096, b=1.089).  

Where a range of wavebands are available it is possible to represent the target reflectance 

as a linear mixture of an idealized vegetation and soil spectrum, or set of spectra using: 

 

  

rspec _ mod (l) = Cvegrveg (l) + Csoilrsoil (l)       (5.5) 

where vegC and soilC are the fractional coverage of vegetation and soil respectively. They 

may sum to greater than one (equivalent to scaling brightness of these components) and 

the two fractions are the free parameters that we retrieve. The surfr , vegr and soilr  term are 

the surface reflectance, vegetation and soil reflectance of the input spectra, respectively  
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Figure 19-3: Surface reflectance model spectra for soil and vegetation 

 

and are a function of wavelength. Example spectra used for initial tests are shown in figure 

3. A number of variations on such methods have been used successfully for aerosol 

retrieval with MERIS (von Hoyningen-Huene et al., 2006; Guanter et al., 2007; Santer et 

al., 2007). However, routine application is limited to regions where such targets are 

available at the appropriate spatial resolution (i.e. oceans and dark dense vegetation), and 

accuracy is limited to the level of uncertainty in the a priori estimate of target reflectance 

variation.  For (A)ATSR, it is also possible to use both spectral and angular constraints 

simultaneously by minimising  a weighted sum of (5.3) and (5.5); this method is based on 

the ESA MERIS/AATSR Synergy project algorithm, and is currently experimental for use 

on (A)ATSR alone. 

19.6 Numerical inversion  

The retrieval algorithm is illustrated in Figure 4. To retrieve the aerosol properties from 

TOA cloud-free radiances we use a coupled numerical inversion scheme that incorporates 

the lookup tables derived from the radiative transfer model and a constraint based on a 

simplified model of land surface scattering.   The basis of the inversion is (i) estimation of 

surface reflectance (RSURF) for all bands and view angles, for an initial estimate of 

atmospheric profile, and (ii) iterative refinement of the atmospheric profile to minimise an 

error metric (EMOD) on the retrieved surface reflectance set.  
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19.6.1 AOT retrieval 

The input to the algorithm is the L2 TOA product for each sensor, averaged over a 8km x 

8km window for each retrieval. This resolution is appropriate to the spatial scale of aerosol 

variability, and in the case of AATSR allows minimisation of mis-registration errors. A set 

of surface reflectances are calculated for a given atmospheric aerosol model and AOT 

parameterised by value at 550 nm. An error metric is defined on the surface reflectance 

set based on either the DOM or MVA constraints depending on sensor. For AATSR we 

use the angular constraint 

   

    (5.6) 

 

while for MERIS we use the spectral model over the 13 available bands 

 

     (5.7) 

 

and for VGT we apply the spectral constraint using 4 bands 

 

     (5.8) 

   

where

  

rspec_ mod  and 

  

rang_ mod are the surface reflectances estimated using (5.5) and (5.3) 

respectively, based on the best-fit values of the free parameters, and RSURF is the surface 

reflectance calculated for an estimate of 550. Iterative inversion yields the optimal values 

of the free parameters (AOT and aerosol model). 
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To optimize the performance of the inversion, normalised values for the set of weights wi 

are determined for each constraint (angular and spectral) separately to represent 

uncertainty in the model fit. For the angular model, the four channels are weighted as 

follows: {1.5, 1.0, 0.5, 1.0, } for both nadir and forward views. For the spectral model, the 

channels have weights of 1.0 for all channels in the range 400-700nm, and for SPOT VGT 

MIR, and 0.05 for remaining channels. Each set of weights are then normalised to men 

value of 1, so that EMOD is invariant to number of data points used.  

 

For a given atmospheric profile the optimal free parameters of the separate land surface 

models that minimize (5.6)-(5.8) are found through the Powell multi-dimensional 

minimisation routine (Press et al., 1992), following transformation of TOA to surface 

reflectance using (5.2). This process is repeated for different AOTs and aerosol models. 

The optimal aerosol properties are found using the Brent one-dimensional optimisation 

method, by finding the value of atmospheric AOT which give rise to the lowest value of 

EMOD in (5.6)-(5.8). Figure 4 illustrates the minimisation procedure, where various 

estimates of AOT give rise to differing values of the error metric for either angular or 

spectral model. The minimum point of this curve, typically reached after 3-6 iterations 

gives the estimate of the AOT. The curvature and error of fit are also used in calculation of 

the error estimate in AOT. 

 

19.6.2 Selection of optimal aerosol model 

The optimal aerosol model is selected by search for the aerosol model which minimises 

the estimated error from (5.6)-(5.8). Retrievals are run independently with different 

candidate models, and minimum value of EMOD across the range of models provides an 

estimate for most likely aerosol type and corresponding properties of Angstrom coefficient, 

single scattering albedo and phase function.  
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Figure 19-4: Example of variation of angular and spectral error metrics with AOT for a vegetated 
scene (Tomsk) for AATSR and MERIS respectively. 

 

19.6.3 AOT error estimate 

The error in retrieving optical thickness is estimated from the error metric Emod of the fit 

from (5.6)-(5.8), and the curvature of the error surface near the minimum. The optimization 

procedure determines the minimum Emin of Emod (), where  represents the aerosol optical 

thickness defined at a reference wavelength (550nm). The value min, where Emod (min) = 

Emin, is the resulting aerosol optical thickness. The curvature term (a) of a parabolic fit to 

the error metric Emod() is calculated near the minimum. This curvature term allows 

calculation of the uncertainty of the retrieved aerosol optical thickness min. This 

uncertainty (1 s.d.) can be expressed as: 

 

         (5.9) 

 

The curvature term (a) of the error surface gives a measure of the sensitivity of the 

location of the minimum to error in model fit. For a steeply curved error surface, the 

retrieved value of  is relatively robust to the estimation of model fit, while for a flat error 

surface small perturbation in model fit error gives rise to a large error in . As surface 
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reflectance approaches the ‘critical point’, where the TOA radiance is insensitive to 

variation in , then a approaches 0 and we have high uncertainty in . Similarly high values 

of a are found where deviation of TOA reflectance is greatest with small change in , 

which is expected for high contrast between aerosol and surface scattering, i.e. for low 

AOT and dark surfaces.  The term Emin gives a sample of the combined error due to error 

in radiative transfer model, instrument noise, and deviation of surface reflectance from the 

assumed reflectance model.  The term k is estimated to be 1.58, but this value will be 

improved by calibration of retrieved AOT against sun-photometer data. 

 

19.6.4 Interpolation of aerosol field  

An optimal estimate of surface reflectance for each channel is produced from the aerosol 

retrieval procedure. However, this is obtained at a coarser grid than the original image (8 x 

8 pixels), and may contain missing values where the inversion has not converged. For 

atmospheric correction we need a further step to interpolate AOT values to all pixels within 

the image. This is achieved by an iterative coarse-to-fine filtering procedure, which 

preserves original retrieved AOT values and estimates AOT where there is missing data. 

Uncertainty in AOT is also interpolated. A final median filter is applied on a 3 x 3 moving 

window to improve robustness by eliminate outlying retrievals. The same lookup tables of 

atmospheric parameters as for the aerosol retrieval algorithm are used to produce surface 

reflectances across the image. 
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20 Practical considerations 

In this section we state the output product for the algorithm, and discuss implementation 

within BEAM and initial testing. 

 

20.1.1 Summary of inputs 

For each satellite, the following inputs are required: 

• TOA reflectance image at each solar reflective waveband and view angle 

• Tie-point information giving solar/view geometry  

• Pixel classification flags to give masks of cloud, snow and water 

• Auxiliary data: 

 Terrain model to give elevation per pixel (GETASSE 30) 

 Column ozone and water vapour 

 

20.1.2 Summary of products 

The following products are returned by the procedure: 

 • aot: retrieved AOT (gap filled) 

• aot_uncertainty: retrieved uncertainty of AOT 

• aerosol_model: Aerosol model index number 

• flags containing information on the retrieval: 

 AOT filled by interpolation (not successfully retrieved) 

 

20.1.3 BEAM implementation and processing efficiency 

The algorithm has implemented within BEAM to allow ease of use of existing modules, 
such as recalibration and to link seamlessly with modules for pre-processing, including 
calibration and cloud detections, and generation of BBDR from the outputs.   
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Initial results of AOT retrieval within the BEAM implementation are shown in Figures 22-1 
to 22-3.  Figure 20-1 (a) shows a TOA composite from AATSR centred on the AERONET 
site at Tomsk, Siberia (15/5/2003). Figure 20-2 shows retrieved AOT throughout the image 
using inversion based on the angular constraint (5.6). Clouds and other excluded data are 
shown as original TOA image values. Estimated uncertainty in AOT is shown in Figure 
20-3, following closely the retrieved AOT.  Figure 20-2a and b shows retrieval with an 
enhanced version of the algorithm which includes both angular and spectral constraints for 
(A)ATSR. The reported AERONET value for Tomsk for this time is 0.33, compared with 
retrieved value for AATSR (angular) of 0.19, and AATSR (angular + spectral) of 0.31. 
Results for the corresponding segment of a VGT scene, showing retrieved AOT and 
uncertainty are given in Figure 20-3. Both sensors have equatorial crossing times of 
10.30am, and show similar spatial variation of aerosol between the two retrievals. VGT 
retrieval gave an AOT of 0.35 at the AERONET site. 

 

The code will be optimised with the target to process one orbital stripline in a time of less 
than 30 processor core minutes. Comparable timings have been reached for the existing 
AATSR code on ESA GPOD, which is a precursor to the algorithm. Options for 
optimisation of speed include reducing the set of available aerosol models where 
automatic selection is used, and retrieval of AOT at a coarse spatial resolution prior to the 
interpolation stage. 
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(a) 

  

    (b)            (c) 

Figure 20-1: a) RGB composite (1600n, 870n, 550f) around Tomsk Aeronet station on 15. May 2005. b) AOT 
retrieval for AATSR with angular approach only c) AOT uncertainty. 
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(a)      (b) 

Figure 20-2: Optional implementation of a mixed surface model based on a combination of the angular and a 
spectral model. a) AOT b) AOT uncertainty 
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(a) 

  

(b)      (c) 

Figure 20-3: a) VGT RGB for same scene as figure 1 (15. May 2005). b) AOT retrieval for VGT segment 
based on spectral surface model c) AOT uncertainty. 
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20.1.4 Comparison with AERONET stations  

Testing will take place by automatic output of AOT for a list of all available reliable 
AERONET sites. Initial testing has taken place of a prototype of the aerosol retrieval 
implemented within BEAM, and a comparison has been made against AERONET sun 
photometer measurements for AATSR and MERIS matches. Initial comparison is made 
using a single aerosol model (continental). A total of 68 images with low cloud amount 
have been tested giving 51 matches against AERONET, covering a range of sites. Of 
these matches, 20 are sites containing dark dense vegetation (DDV) in the vicinity of the 
AERONET station, based on availability of the MERIS L2 aerosol product. Figure 20-4 
Figure 20-5  show initial comparison against AERONET for AATSR and MERIS 
respectively. Over the full dataset MERIS retrievals show correlation coefficient r =0.71, 
and mean absolute error (MAE) of 0.15, while AATSR retrievals give r =0.78 and MAE of 
0.12. Over the DDV subset, the MERIS retrieval shows r = 0.96 and MAE 0.09, while 
AATSR shows correlation r  = 0.86, but MAE of 0.09 also. Testing of SPOT-VGT is 
currently in progress. 
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Figure 8 

Figure 20-4: Results of MERIS retrieval compared with AERONET sites (DDV targets only). 

 

 

Figure 20-5: Results of AATSR retrieval compared with AERONET sites (DDV targets only).
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21 Assumptions and Limitations 

The algorithm is intended to provide an efficient global retrieval of aerosol optical 

thickness and uncertainty for input to SDR processing using a common framework for all 

sensors. The algorithm assumes as input existence a reliable mask of land/water and 

cloud (see GlobAlbedo_PixID_ATBD_V1.0 (2010)), registration of the (A)ATSR scenes 

and availability of a DEM at 1km resolution and fields of column ozone and water vapour. 

The current algorithm includes several limitations: 

. 

 Applicability to bright regions: While the (A)ATSR retrievals perform well over 

bright desert targets, for MERIS and VGT, performance over these regions is likely 

to be degraded where vegetated targets are sparse. In addition, the algorithms for 

all instruments have not been adapted for snow and ice targets, and would require 

further development and testing. A background climatology value with suitable error 

estimate should be used as a default where the retrieval is unreliable. 

 

 Approximations of RT: The model uses the RT scheme developed for SDR 

retrieval and includes the same assumptions and limitations (see 

GlobAlbedo_BBDR_ATBD_V1.0 (2010)). In particular, although differing values of 

SDR are retrieved with view angle, the model of atmospheric radiative transfer 

assumes the surface is Lambertian when modelling the coupling of surface and 

atmospheric scattering.  

 

 Aerosol model selection: The ability to determine an optimal aerosol model from 

the different algorithms is not yet determined. A default setting of model properties 

other than AOT according to climatology is likely to be a practical solution for 

efficiency, and is likely to introduce only low error in SDR. 
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23 Introduction 

The purpose of this document is to describe the theoretical background of the GlobAlbedo 

broadband directional reflectance (BBDR) processor. Some requirements to this 

processor are  

 It must be capable of deriving BBDR products from top-of-atmosphere (TOA) 

radiance or reflectance data measured by the three instruments under 

consideration in GlobAlbedo. These are ENVISAT/MERIS, ENVISAT/AATSR (and 

its precursor ATSR-2) and SPOT/VEGETATION.  

 The broadband products must be generated for three broadband spectral ranges 

(visible, near-infrared and shortwave, which correspond to [300-700] nm, [700-

3000] nm and [300-3000] nm, respectively).  

 The BBDR products must include a reliable tracking of uncertainties within the 

entire processing including error covariances between the three broadband spectral 

ranges.  

The processor is designed to produce surface spectral directional reflectance (SDR) and 

the subsequent BBDR products (including uncertainties) from TOA data, but only BBDR 

are output in the general processing configuration.  

Given the high impact of aerosol extinction on the visible and shortwave BBDRs and the 

complexity of aerosol retrieval over land, it was decided to establish for GlobAlbedo a 

modular processing approach which would enable the parallel development and 

refinement of the different pre-processing steps, and in particular of the aerosol and BBDR 

retrieval processors.  

This formal separation (pixel classification-AOD retrieval-reflectance retrieval) is actually 

performed in most of the atmospheric correction algorithms for optical data over land. In 

this modular approach, the BBDR processor receives inputs from the GlobAlbedo pixel 

classification and aerosol retrieval modules, and generates outputs in BEAM-DIMAP 

format projected to the MODAGG sinusoidal projection system for the latter exploitation by 

the albedo retrieval module.  
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25 Definitions and abbreviations 

25.1 Acronyms and Abbreviations  

AATSR  Advanced Along-Track Scanning Radiometer  

AOD550  Aerosol Optical Depth in 550 nm  

BBDR  Broadband Directional Reflectance  

BRDF  Bidirectional Reflectance Distribution Function  

CWV   Columnar water vapor  

ELEV   Surface elevation above sea level  

LUT   Look-up table  

MERIS  MEdium Resolution Imaging Spectrometer  

MOMO  Matrix Operator MOdel  

N2B  Narrow to broadband 

NDVI   Normalized Difference Vegetation Index  

NIR   Near-infrared broadband range (700-3000 nm)  

OZO   Columnar ozone  

RAA   Relative Azimuth Angle  

SDR   Surface Spectral Directional Reflectance  

SRF   Spectral Response Function  

SW   Shortwave broadband range (300-3000 nm)  

SZA   Sun Zenith Angle  

TOA   Top Of Atmosphere  

VGT   Vegetation instrument  

VIS   Visible broadband range (300-700 nm)  

VNIR   Visible and near-infrared  

VZA   View Zenith Angle  

 

25.2 Terms and Symbols 

 Rλ 
* - Top-of-atmosphere spectral directional reflectance  

 Rλ - Surface spectral directional reflectance, SDR  

 RΛ - Broadband directional reflectance, BBDR  

 σλ - SDR error matrix  
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 σΛ - BBDR error matrix  

 σ rel
Λ - BBDR relative error matrix  

 Jx - Gradient ∂Rλ∕∂x, with x = AOD, CWV, OZO  

 kx (Ωv , Ωs ) - BRDF model kernel x, with x = VOL (volumetric RossThick) or GEO 

(geometric LiSparseModisReciprocal)  

 K′x (Ωs ) - Directional-hemispherical integral of kx(Ωv, Ωs) for direction Ωs, with x = 

VOL, GEO  

 K′x (Ωv ) - Hemispherical-Directional integral of kx(Ωv, Ωs) for direction Ωv, with x = 

VOL, GEO  

 Kx - Hemispherical-hemispherical integral of kx(Ωv, Ωs), with x = VOL, GEO  

 Nsky ↓ (Ωs ) (Nsky↑(Ωv)) - Downward (upward) normalised sky radiance distribution  

 D0λ↓ (D0λ↑ ) - Fraction of diffuse-to-total downward (upward) radiation at ground.  
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26 Algorithm Theoretical Background 

26.1 Theoretical description 

26.1.1 Formulation of the atmosphere-surface radiative transfer 

The apparent spectral directional reflectance of the coupled surface-atmosphere system (Rλ
*) is related to 

the radiance Lλ measured by a satellite at the TOA by  

 
(5.1) 

where Es,λ is the extraterrestrial irradiance at the time of the measurement and (Ωv, Ωs) denote the 

observation and illumination directions, which can also be expressed as (μv,μs,ϕ), where μv is the cosine of 

the view zenith angle (VZA), μs the cosine of the sun zenith angle (SZA) and ϕ is the relative azimuth angle 

(RAA). The subscript λ refers in this text to the “narrowband” spectral interval specified by the spectral 

response function (SRF) of a given spaceborne sensor.  

In the most general case of solar radiation interacting with a non-Lambertian surface, the TOA reflectance 

can be formulated by four additive contributions (Tanré et al., 1983; Vermote et al., 1997b): (1) the 

photons directly transmitted from the sun to the target and directly reflected back to the sensor, (2) the 

photons scattered by the atmosphere then reflected by the target and directly transmitted to the sensor, 

(3) the photons directly transmitted to the target but scattered by the atmosphere on their way to the 

sensor, and finally (4) the photons having at least two interactions with the atmosphere and one with the 

target. Following the notation in GlobAlbedo-Albedo-ATBD-V1.0 (2010), this leads to the expression  

 

(5.2) 

where Ratm,λ is the atmospheric intrinsic reflectance; γλ(-μs), γλ(μv) are the total atmospheric transmittance 

in the downward and upward direction, respectively; ρλ is the atmospheric spherical albedo, which gives 

the reflectance of the atmosphere for isotropic light entering it from the surface; R′λ and R′′λ are functions 

of the surface bidirectional reflectance distribution function (BRDF):  

 R′λ includes the BRDF Rλ(Ωv, Ωs) and the so-called atmosphere-surface coupling 

terms, which are R′λ(μv), R′λ(μs) and Rλ for irradiance-weighted hemispherical-

directional, directional-hemispherical and hemispherical-hemispherical reflectance, 

respectively,  
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D0λ↓ (D0λ↑) are the ratio of diffuse-to-total transmittance in the downward (upward) 
direction weighting the contribution of each term to R′λ.  

 R′′ λ is the hemispherical-hemispherical reflectance for radiation involving at least 

two interactions between the atmosphere and the surface. It can be approximated 

by the bihemispherical reflectance Rλ if the target is assumed to be homogeneous 

or if the local spatial averaging of the target and its environment is ignored.  

The ultimate purpose of atmospheric correction is the inversion of the surface BRDF Rλ (Ωv , Ωs ) from the 

TOA reflectance Rλ
* derived from the radiance measured by the sensor at the satellite. However, Eq. 5.2 is 

not invertible in Rλ, which is included in the angular integrals leading to R′λ(μv), R′λ(μs) and Rλ. These 

integrals cannot be performed if Rλ(Ωv, Ωs) is not known for the entire hemisphere.  

Some approaches can be adopted for the estimation of an a priori Rλ(Ωv, Ωs) based on either multi-angular 

acquisitions or in the use of ancillary surface products (Vermote et al., 1997a). However, these approaches 

are not usable for operational atmospheric correction algorithms of single-view instruments, which cannot 

rely on existing external surface products, nor involve temporal or spatial data composites. For this reason, 

a uniform Lambertian surface is normally assumed as a basis for the modelling of the atmosphere-surface 

radiative transfer. Under this assumption Eq. 5.2 becomes  

 
(5.4) 

which can be inverted analytically to retrieve Rλ(Ωv, Ωs) from Rλ
* and the atmospheric parameters Ratm,λ, γλ 

and ρλ.  

As discussed in GlobAlbedo-Albedo-ATBD-V1.0 (2010), the Lambertian equivalent reflectance Rλ(Ωv, Ωs) 

derived from Eq. 5.4, which is taken as SDR in the GlobAlbedo processing chain, represents a smoothed 

version of the surface BRDF. Relative errors in reflectance retrieval were shown to be up to 15% for turbid 

atmospheres (Hu et al., 1999). In turn, Wang et al. (2010) estimated the slope of regression of Lambertian 

surface reflectance with respect to the actual bidirectional reflectance factor to be about 0.85 in the red 

and 0.6 in the green bands.  

This error in Rλ associated to the Lambertian assumption will be reduced at the albedo retrieval step by the 

use of linear kernel models weighted with the distribution of sky radiance by means of a formulation 

analogue to that in Eq. 5.3. Using the formulation in GlobAlbedo-Albedo-ATBD-V1.0 (2010) (Eq. 13), the sky 

radiance-weighted volumetric (RossThick) and geometric (LiSparseModisReciprocal) kernels K′vol,geo are 

expressed as  
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where kx are the RossThick and LiSparseModisReciprocal kernels in their original form, 
and  

 

The term Nsky↓ (Nsky↑) is the normalised downwelling (upwelling) sky-radiance. This 
modified version of the kernels is designed so that the errors due to the Lambertian 
approach are cancelled out at the albedo retrieval step. The K terms in Eq. 5.5 are also an 
output of the GlobAlbedo BBDR processor.  

26.1.2 Atmospheric look-up tables  

The atmospheric parameters Ratm,λ, γλ(μv), γλ(-μs) and ρλ in Eq. 5.4 and the D0λ↓ and D0λ↑ terms in Eq. 5.3 are 

stored in look-up tables (LUTs) for fast access during the processing. A series of LUTs have been compiled 

for each one of the three instruments under consideration in GlobAlbedo:  

 LUT-1 (x7 aerosol models): Provides Ratm,λ, γλ(μv)γλ(-μs), ρλ, D0λ↓ and D0λ↑ as a 

function of VZA, SZA, PHI, height of the surface (HSF) and aerosol optical depth at 

550 nm (AOD550). No gaseous absorption is considered, but extinction is only 

calculated for scattering and aerosol absorption. LUT-1 is intended for aerosol and 

SDR retrieval.  

 LUT-2 (x7 aerosol models): Provides the gradient JAOD = ∂Rλ∕∂AOD550 as a 

function of Rλ and the same input parameter grid of LUT-1. It is intended for error 

propagation along the SDR retrieval process.  

 LUT-3: Provides total gaseous transmittance Tg as a function of the geometric air-

mass factor (AMF), the water vapor column content (CWV) and the ozone column 

content (OZO). It is intended for gas correction prior to aerosol and SDR retrieval.  

 LUT-4: Provides the gradients JCWV = ∂Rλ∕∂CWV and JOZO = ∂Rλ∕∂OZO as a function 

of Rλ and the same input parameter grid of LUT-3. It is intended for error 

propagation along the SDR retrieval process.  

 LUT-5: Provides the Nsky-weighted K′x(Ωs) (K′x(Ωv)) kernel integrals as a function of 

SZA (VZA), HSF, AOD550 and broadband spectral range. The invariant Kx is also 

provided by these LUTs.  
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The spectral response functions of the three instruments used for the compilation of the LUTs are 

displayed in Fig. 9.  

LUT-1 and LUT-2 have been compiled with the Matrix Operator MOdel (MOMO) radiative transfer code 

(Fischer and Grassl, 1984; Fell and Fischer, 2001). MOMO is a widely accepted radiative transfer code which 

provides all the features required for atmospheric radiative transfer simulations in GlobAlbedo. It is 

currently part of the models used to generate the operational auxiliary data tables in the MEdium 

Resolution Imaging Spectrometer (MERIS) ground segment of ESA. MOMO has been successfully validated 

and applied for the development of new remote sensing techniques, e.g. to perform the radiative transfer 

calculations for the development of several MERIS remote sensing algorithms for ESAs ground- segment, 

particularly for the water vapour, clouds and aerosol retrieval algorithms. It is based on the adding-

doubling principle.  

The six aerosol models described in Govaerts et al. (2010) and a continental model built up from the 

Optical Properties of Aerosols and Clouds (OPAC) aerosol model database (Hess et al., 1998) have been 

used for the generation of LUT-1 and LUT-2. The optical properties of the seven models are summarised in 

Table 1. The six models from Govaerts et al. (2010) result from the clustering of a large data set of 

AERONET observations (Holben et al., 1998) according to the single scattering albedo and phase function of 

each observation. The aerosol models derived with this procedure represent combinations of absorbing 

and non-absorbing aerosol and of spherical and non-spherical particles. The single scattering albedo and 

phase function of the non-spherical models were calculated with a scattering code based on spheroid 

models (Dubovik et al., 2006), while the Mie code built-in in MOMO was used for the spherical models. 

 

The impact of the particular aerosol model on Ratm,λ is illustrated in Fig. 11. The slope of the derivative of 

Ratm,λ with respect to AOD550 changes with the model, which shows that different values of AOD550 

would be retrieved by different aerosol models. This implies that the aerosol model used in surface 

reflectance retrieval must be the same model used in the prior aerosol retrieval in order to minimise the 

different Ratm,λ given for the same AOD550 by the different aerosol models. 
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The impact of the particular aerosol model on Ratm,λ is illustrated in Fig. 11. The slope of the derivative of 

Ratm,λ with respect to AOD550 changes with the model, which shows that different values of AOD550 

would be retrieved by different aerosol models. This implies that the aerosol model used in surface 

reflectance retrieval must be the same model used in the prior aerosol retrieval in order to minimise the 

different Ratm,λ given for the same AOD550 by the different aerosol models.  

The continental model-I is selected as default to specify the aerosol extinction properties. It is considered 

that the characterisation of the downward irradiance and the atmospheric path reflectance can be 

achieved with enough accuracy with this aerosol model as long as the same model is used for the 

estimation of AOD by the aerosol retrieval processor. The AOD550 value to be ingested by the BBDR 

retrieval processor will then be consistent with the continental-I model so that the downward irradiance 

and the atmospheric path reflectance provide a reliable representation of the actual atmospheric 

conditions. However, the option to process some areas around the globe with a different aerosol model, 

e.g. with a model made of large non-spherical particles (yet to be determined), is kept as an option by the 

BBDR processor.  

../../../../Documents%20and%20Settings/Administrador/Escritorio/temp_docs/WORD/GlobAlbedo_BBDR_ATBD_V2.0.html#x1-1800711
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The distribution of the breakpoints in LUT-1 and LUT-2 has been set so that the maximum variation range in 

the parameter space is covered. The resulting distribution of input parameters in LUT-1 and LUT-2 is shown 

in Table 2 and in Fig. 1. Given a certain set of inputs, the values of the atmospheric parameters are 

calculated through linear interpolation in the 5 directions of the input parameter space. It must be 

remarked that possible errors due to deviations from linearity at any combination of optical parameters 

and input values tend to compensate along the whole atmospheric correction process. For example, if a 

small bias in path radiance is introduced by linear interpolation during the estimation of AOT, it is cancelled 

off to a large extent when the resulting AOT value is re-inserted in the process to calculate surface 

reflectance, as the same LUT and interpolation technique are used in both steps.  
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LUT-3 and LUT-4 are calculated with the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) 

radiative transfer code (Vermote et al., 1997b). This code is intended for fast radiative transfer calculations 

at a relatively coarse internal spectral sampling of 2.5 nm. The atmospheric transmittance due to gaseous 

absorption (water vapour, ozone, oxygen, carbon dioxide, methane and nitrous oxide are included in 6S) 

has been calculated with 6S as a function of the geometric AMF, CWV and OZO for the spectral response 

functions of MERIS, AATSR and VGT. The geometric AMF is calculated for seven pairs of illumination and 

observation angles between 0 and 70∘, while four breakpoints are used for CWV ([0, 1.5, 3, 4.5] g cm-2 ) 

and OZO ([0.1, 0.3, 0.5, 0.6] atm cm-1). Sample transmittance functions for MERIS are plotted in Fig. 2. The 

15 MERIS bands are plotted for illustration purposes, although bands 11 and 15 will not be processed to 

generate the GlobAlbedo products because of the high contamination by oxygen and water vapour 

absorptions, respectively.  

 

The gradients JAOD, JCWV and JOZO used for error propagation are provided by LUT-2 and LUT-4 for the same 

input parameters as LUT-1 and LUT-3, respectively. The value of these gradients depends strongly on 

surface reflectance. For this reason, each J is stored in the LUTs as a pair J0,J1, which are the offset and the 

slope of a linear relationship between J and R. Sample JAOD, JCWV and JOZO are displayed in the Fig. 12 of 

Section 7. 
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An example of the Nsky-weighted integral of the kernels K′x(Ωs), K′x(Ωv) is displayed in Fig. 3. It can be 

observed that K′x(Ωs) and K′x(Ωv) are not interchangeable for the most general case of non-isotropic 

atmospheres, especially for the geometric kernel. Sample Nsky patterns are displayed in Fig. 13 for upward 

and downward radiation, different illumination and observation angles, aerosol models and spectral 

channels.   

 

26.1.3 Instrument intercalibration 

The first processing step is the refinement of the radiometric calibration in order to guarantee the 

consistency of the data from the three instruments. The TOA data from the three instruments are re-

calibrated with the coefficients obtained from the intercomparison exercise performed over Dome-C. 

Based on a-priori instrument specifications and onboard calibration means, MERIS is considered the 

calibration reference. AATSR and VGT are calibrated against MERIS with coefficients 1/[1.0253, 1.0093, 

1.0265, 1] and 1/ [1.012, 0.953, 0.971, 1], respectively. The methodology and the main results of the 

intercomparison exercise leading to these coefficients are described in the Appendix II of this document. 

26.1.4 SDR and NDVI retrieval 

Spectral directional reflectance Rλ is derived from TOA reflectance by means of the analytical inversion of 

Eq. 5.4,  

 
(5.9) 

Rλ 
* (Ω v, Ωs) is calculated from TOA radiance with Eq. 5.1. Rλ

*(Ω v, Ωs) is first corrected from gaseous 

absorption with LUT-3 for a set of input AMF, CWV and OZO. The atmospheric parameters Ratm,λ, γλ and ρλ 
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are provided by LUT-1 per-pixel, being the input VZA, SZA, RAA, ELEV and AOD550 also provided on a per-

pixel basis. For the correction of gas absorptions, one single spatially-averaged value is used for either CWV 

or OZO, depending on the sensor. For MERIS and AATSR, AMF and CWV are considered pixel-wise, and a 

mean value representative of the imaged area is used for OZO. For VGT, AMF and OZO are considered per-

pixel and CWV spatially-constant. This is done in order to enable fast 2-D interpolations rather than more 

time-consuming 3-D interpolations. The selection of CWV or OZO as the spatially-constant parameter is 

performed according to which one has the lowest relative impact on reflectance, which is illustrated in the 

J gradients displayed in Fig. 12 of Section 7.  

No correction of adjacency effects (Mekler and Kaufman, 1982; Kaufman, 1989) has been found to be 

necessary for the GlobAlbedo SDR product, as this is focused on land surfaces and the spatial resolution of 

the three instruments under consideration is comparable to the atmospheric point spread function.  

The normalized difference vegetation index (NDVI) (Tucker, 1979) is also part of the GlobAlbedo products. 

It is defined as  

 
(5.10) 

 

where R where Rnir and Rred represent the SDR in the near-infrared and red spectral 

regions, respectively. The selected red and near-infrared narrow bands are 7 and 13 for 
MERIS (centered at 665 and 865 nm, respectively), 2 and 3 for AATSR (centered at 665 
and 865 nm, respectively) and 2 and 3 for VGT (centered at 645 and 835 nm,  
respectively). 

However, the spectral difference in both the channel position and width for the three instruments is 

expected to cause biases in the NDVI (Samain et al., 2006). For this reason, the NDVI expression in Eq. 5.10 

is calculated in GlobAlbedo as  

 
(5.11) 

 

NDVISC represents a spectrally-corrected NDVI. The a, b parameters are intended to 

weight Rred and Rnir so that the NDVI calculated from the three sensors is comparable. The 

procedure followed to calculate a, b for each sensor consists in the use of a spectral 

library of vegetation, bare soil and snow/ice spectral reflectance patterns provided at a 
high spectral resolution to calculate a reference NDVI for each pattern. The reference 
spectral wavelengths were 665 and 865 nm for red and near-infrared, respectively, in 
order to take advantage of the MERIS and AATSR channels centered at those values. 

The a, b coefficients are calculated by means of linear regression between the NDVI 
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derived from the high spectral resolution spectra and the red and near-infrared reflectance 
derived from the same set of reflectance spectra after convolution to the instrument 
spectral response function. Results from this procedure are shown in Fig. 4. The NDVI 

calculated from the Rred and Rnir sampled at the instrument channels, before and after the 

spectral correction, is compared with the NDVI derived from the high resolution reflectance 

patterns. The data in the x-axis is the same for the three cases. It can be stated that the 
correction is negligible for MERIS and AATSR, because 665 and 865 nm (at which MERIS 
and AATSR channels are centered) were taken as reference wavelengths, and because  
the bandwidths are relatively narrow in both instruments. However, a noticeable 
improvement is found in the case of VGT, whose red and near-inrfared channels are at 
645 and 835 nm and have a bandwidth of 70 and 110 nm, respectively. 

 

 

 

26.1.5 Narrow-to-broadband conversion (BBDR retrieval) 

Broadband directional reflectance (BBDR, RΛ) is directly derived from SDR data by means of a linear 

narrow-to-broadband (N2B) conversion process. The output from this conversion directional reflectance 

integrated in three broadband spectral ranges: visible (VIS, 300-700 nm), near-infrared (NIR, 700-3000 nm) 

and shortwave (SW, 300-3000 nm).  

The linear N2B conversion has the form  

 
(5.12) 

where α is the vector of N2B conversion coefficients and Λ is each of the three broadband regions.  
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The procedure to calculate the N2B coefficients is based on that proposed by Liang (2000). The assumption 

is that a reduced number of spectral measurements linearly weighted can be used to perform spectral 

integrals in broad spectral regions. Furthermore, the procedure by Liang (2000) assumes that a single set of 

conversion coefficient is valid for a wide range of illumination and atmospheric conditions.  

Under those assumptions, the procedure to calculate the set of α coefficients for each Λ is based on 

simulating a large data base of theoretical RΛ by means of  

 
(5.13) 

where F↓(λ) and R(λ) are the incoming irradiance and surface reflectance in the 300-3000 nm spectral 

range with a spectral sampling of 2.5 nm. A large number of RΛ values is produced for different illumination 

and atmospheric conditions (variations in SZA, ELEV, AOD550 and CWV) and land surface reflectance 

patterns. Ranges of variation ranges are SZA=[0, 15, 30, 45, 60] deg, ELEV= [0., 700, 2000] m, AOD550=[0., 

0.1, 0.2, 0.3, 0.6, 1.0, 1.5, 2.0] and CWV=[0., 0.5, 1, 2, 3, 4, 5] g cm-2, which total 840 cases. The influence of 

ozone has been considered negligible for this study. The at-surface downward irradiance F ↓ (λ) in Eq. 5.13 

is calculated for this combination of input parameters as  

 
(5.14) 

Concerning surface reflectance, a spectral library consisting of 905 spectra extracted from existing spectral 

libraries and real hyperspectral data acquired by the HyMAP airborne imaging spectrometer has been used. 

A subset of those reflectance spectra is displayed in Fig. 5. The reflectance patterns in the library are 

focused on characteristic vegetation and soil spectra. A subset of ice/snow patterns (coarse, fine, frost and 

medium spectra from the JHU spectral library) is also included in order to account for the brightest 

surfaces. It is considered that this range of spectral reflectance patterns can cover most of the natural land 

surfaces for which the BBDR product is to be generated. A smaller number of 256 spectra was used by 

Liang (2000).  

../../../../Documents%20and%20Settings/ana/Escritorio/html/GlobAlbedo_BBDR_ATBD_V2.0.html#x1-11002r13
../../../../Documents%20and%20Settings/ana/Escritorio/html/GlobAlbedo_BBDR_ATBD_V2.0.html#x1-110044
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These input high resolution spectra are convolved to the instrument spectral response function 

(convolution from R(λ) to Rλ in the expressions above) so that the N2B conversion coefficients α(Λ) can be 

calculated by linear regression of Rλ (840 atmospheric cases × 905 reflectance patterns) and RΛ (905 

patterns). The result is a single set of N2B conversion coefficients for each Λ so that the N2B conversion 

process is independent of the atmospheric state. Errors in the conversion process are then mostly given by 

the deviation of each single atmospheric state from the average atmospheric conditions represented by 

the coefficients. This is illustrated in Fig. 6, where theoretical and retrieved BBDR for the VGT instrument, 

the NIR spectral range and the three types of incoming irradiance are compared. The N2B conversion 

performed with a single set of α for all the atmospheric conditions is compared with the equivalent case 

presented in Liang (2000) and with the result that would be obtained if the N2B conversion were 

performed independently for each atmospheric case. The differences observed between the first two cases 

are in principle due to the differences in the data bases used for the calculation of the coefficients: the 

retrieved GlobAlbedo BBDRs in the plot are produced for the same data base used for the calculation of the 

coefficients, so a better performance is expected than with Liang’s coefficients. On the other hand, the 

large improvement in the N2B conversion performance when the atmospheric conditions are taken into 

account can also be noted in Fig. 6. However, the particular nature of the GlobAlbedo processing chain, 

which performs the angular integration for albedo retrieval in the broadband space and that requires 

BBDRs to be independent of the atmospheric conditions (GlobAlbedo-Albedo-ATBD-V1.0, 2010), does not 

enable to take the knowledge of the atmospheric state into account when performing the N2B conversion. 

The estimation of the associated error is considered in the total BBDR error budget.  
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The fits for the calculation of the αλ(Λ) coefficients for GlobAlbedo are presented in Section 7. The fits are 

in general comparable to those presented in Liang (2000). The N2B conversion presents small errors for the 

three instruments in the VIS spectral range, while the errors are larger for the NIR and SW regions.The 

different SZAs do not have a big influence in the conversion. This was also stated by Peltoniemi 

et al. (2010). It must be remarked that the slope of the fit is very close to 1 in all cases, which validates the 

conversion for both low and high reflectance values. For this reason, no additional set of specific 

conversion coefficients for only snow and ice pixels (Greuell and Oerlemans, 2004) has been considered as 

necessary. On the other hand, it can also be noted that a similar performance of the N2B conversion is 

found in the three spectral ranges for the three instruments. No inter-instrument biases in the BBDR 

products are then expected to be caused by the N2B conversion process.  

The N2B conversion equations are listed below. The negative values obtained for the weighted of some of 

the bands result from the non-constrained linear regression. Even though some sort of non-negative least 

squares (NNLS) algorithm could have been applied to the data set in order to obtain positive coefficients, it 

was preferred to be consistent with the Liang (2000) set-up selected as the reference.  
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A similar approach has been performed for the N2B conversion of the D0λ↓, D0λ↑ parameters needed for 

albedo retrieval, which are provided as narrowband variables by LUT-1. Due to the spectral smoothness of 

these functions, very small errors are committed in the N2B conversion of D0λ↓ and D0λ↑.  

26.1.6 Estimation of uncertainties in SDR and BBDR 

Tracking of uncertainties is one of the specific requirements for the GlobAlbedo processing chain. The 

purpose in this part of the processing is to generate a reliable estimation of the errors in the BBDR products 

propagated along the processing including the error covariance between the different spectral ranges.  

It must be noted that Rλ retrieval in GlobAlbedo is performed by means of an analytical expression (Eq. 5.9) 

based on a Lambertian surface reflectance, which is a common approach for operational atmospheric 

correction of single-view instruments. For this reason, no optimal estimation framework is needed for this 

step of the processing, which has an impact on error propagation. No posterior error covariance matrix is 

then automatically generated throughout the processing from TOA radiance to BBDR as it would be the 

case of an optimal estimation based retrieval approach, but the final error covariance matrix is derived by 

explicitly calculating the errors at each step.  

The error covariance terms in the BBDR products are given by the SDR error covariance matrices and the 

spectral covariance between the RΛ in the three broadband ranges. For the linear conversion in Eq. 5.12, 

the propagation of variance-covariances between the narrowband and the broadband spaces is given by  

 (5.15) 
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where M is the variance-covariance matrix of narrowband reflectance. From that relationship, the BBDR 

error variance-covariance matrix σΛ
2 is given by  

 (5.16) 

where σλ is the SDR error matrix, and σΛ,N2B is the error intrinsic to the N2B conversion, which is assumed to 

be given by the RMSE of the fits for the calculation of the N2B conversion coefficients in Fig. 14.  

Different error sources are considered to contribute to the total σλ:  

 Instrumental calibration and noise: Based on each instrument’s specifications, 

relative radiometric accuracy of 2%, 5% and 5% are assumed for MERIS, AATSR 

and VGT, respectively. These errors are taken as random and are assumed to 

represent the entire instrumental contribution to the total error budget. It must be 

remarked that those numbers are based on mission requirements rather than on 

real instrument performance reports, which are difficult to find and to interprete in 

some cases. Systematic radiometric calibration errors are assumed to have been 

reduced by with the results from the intercalibration experiment performed over the 

Dome-C site described in Appendix II. The potential contributions of inter-band 

calibration and spectral calibration errors are neglected in this analysis because of 

the difficulties to obtain relible data.  

 Atmosphere: Errors in the knowledge of the atmospheric parameters (AOD, CWV 

and OZO) are converted to errors in SDR by means of the JAOD, JCWV and JOZO 

gradients provided by LUT-2 and LUT-4 (e.g. Fig 12). The uncertainty in AOD is 

expected to be provided by the GlobAlbedo AOD retrieval module. The 

uncertainties in CWV are an input to the processor. Both must be calculated per-

pixel. In the case of OZO, due to its low spatial variability a single value of OZO and 

its error is assumed to be representative of the entire imaged area. The uncertainty 

in OZO is calculated as the standard deviation of OZO within the image.  

The propagation of errors due to the atmospheric components is illustrated in Figs. 15-16 of 

Section 7. Input Rλ and the errors calculated from the gradients Jx are compared with the Rλ 

retrieved for the AOD, CWV and OZO in the limits of the input x ± σx intervals in order to validate 

the error propagation approach implemented.  

 Spatial co-registration: The different spatial response and acquisition geometry of 

the three instruments leads to severe instrument-dependent spatial co-registration 

errors. In particular, the worst case is expected for AATSR-forward view due to the 

conical scan approach and the tilted observation. In the case of VGT data, even 

though no important co-location errors seem to be present, the plate carrée 

projection on which the level-1b data are provided causes the final resolution of the 
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data to be degraded after the BBDRs are resampled to the GlobAlbedo sinusoidal 

grid, which makes that the BBDRs can no longer be considered to have a 1 km 

resolution. The effect of co-registration errors between MERIS and AATSR-nadir 

(bands 3 and 13, respectively) is illustrated in Fig. 7. The data sets are projected to 

the sinusoidal grid. Most of the scattering found in the comparison between the two 

data sets disappears when 2- and 4-pixel binning is performed, which demonstrates 

the importance of co-registration errors. The highest uncertainties are calculated for 

snow surfaces in the VIS and land/water interfaces in the NIR. 

Spatial co-registration errors are calculated from the local spatial heterogeneity. The local standard 

deviation calculated for each spectral band in 3×3 pixel windows is used as an estimate of the co-

registration error, which is weighted with factors 1, 1.1, 1.2 and 1.3 for MERIS, VGT, AATSR-nadir 

and AATSR-forward, respectively, selected according to our experience with the data. An example 

of the estimated a-priori co-registration error is displayed in Fig. 21. 

 

Modelling errors associated to the neglection of directional reflectance effects could also be added to the 

error budget, as this error is transferred to the SDR and BBDR products. However, as it is demonstrated in 

GlobAlbedo-Albedo-ATBD-V1.0 (2010), this is compensated in the albedo retrieval step by including the 

Nsky-weighting in the integral of the BRDF kernels. For this reason, this error does not propagate from 

BBDR to albedo and is therefore not included in the error propagation.  

The total reflectance error (σλ
2) in the narrowband channels i,j is then calculated as  
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where σλ,radiom
2 and σ λ,co-reg

2 are the square of the errors due to instruments radiometric 
calibration and the co-registration, respectively, and rij is the correlation between bands. 
Each of the five contributions is calculated on a per-pixel basis. In principle, the spectral 
correlation r depends on the particular reflectance pattern. For example, the red and near-
infrared bands from a bare soil reflectance spectrum are expected to be positively 
correlated under variations in AOD550, while the correlation could even be negative (e.g. 
higher red reflectance and lower near-infrared reflectance for an increase in AOD) for a 
green vegetation spectrum. However, the calculation of per-pixel r would complicate the 
design an efficiency of the processor considerably. For the sake of simplicity, r is assumed 
to be 1 in all cases, which corresponds to the worst case error. The impact of these error 
sources (other than co-registration) on the total SDR error is illustrated in the Fig. 17 of 
Section 7.  

 

Examples of the impact of each contribution to the total σΛ for the vegetation, soil and now 
spectral patterns in Fig. 15 are displayed in Fig. 8. It can be observed that the magnitude 
of the total error presents a relatively high dependence on both the instrument and the 
surface type. The error is largest for snow surfaces due to the multiplicative nature of the 
instrumental error. The N2B conversion is the most important error source for MERIS data 
over vegetation and soil patterns, while the radiometric error is most important contribution 
for snow and for the three surfaces as observed by AATSR and VGT. The atmosphere 
has less influence and is highly dependent on the instrument band setting and the 
channels used for the N2B conversion. Only the impact of AOD is important for the VIS 
region; CWV is only noticeable for VGT, for which OZO is negligible; the AOD contribution 
is generally negligible for the brigthest surfaces and the SW spectral region; OZO is 
relatively important for the NIR and the VIS spectral ranges when they are calculated from 
MERIS and AATSR, respectively. 

 

A complete view of the σΛ matrices is provided in Fig. 18. The matrices are calculated with 
the same iput uncertainties as the σΛ represented in Fig. 8, which represent the diagonal 
errors in Fig. 18. As already stated from Fig. 8, the largest absolute errors correspond to 
the snow surface. Very low error covariance is found between the VIS and NIR ranges. 
The comparison between the three instruments shows that relatively similar results are to 
be expected from the three instruments over vegetation and bare soil surfaces, and also 
over snow between AATSR and VGT, while a different performance is expected for 
MERIS data over snow. 
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The relative error matrix σΛ
rel in Fig. 19 is calculated as  

 
(5.18) 
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Relative errors are normally below 5% except for the vegetation cover in the VIS range, for which relative 

errors can grow up > 10%.  

The error correlation matrix Σ in Fig. 20 is defined as  

 
(5.19) 

 

such that -1 ≤ Σij ≤ +1. When Σij → 0, uncertainties on the broadband ranges i,j are 
uncorrelated, while when Σij →±1 uncertainties are either positively (+1) of negatively (-1) 
correlated. The largest positive correlation in our study cases is found between NIR and 
SW for the snow cover, while a strong negative correlation is observed in vegetation 
between VIS and NIR in MERIS data, which is probably due to the lack of a spectral 
channel arogun 1600 nm as AATSR and VGT have. 

According to the definition in Eq. 5.11, the uncertainty of the NDVI product σNDVI can be calculated as 

 

(5.20) 

where σλ is calculated for the SDR in the red and near-infrared channels selected for each 
instrument.  

 

26.2 Processor Description  

 

The BBDR processor described in this document converts from TOA radiance to BBDR 
data (and uncertainties) for the three instruments considered in Globalbedo. SDR data 
and uncertainties are intermediate products generated by the processor which are not 
stored in the operational processing pipe. The processor is designed to follow the pixel 
classification processor (GlobAlbedo-PixID-ATBD-V1.0, 2010) and the aerosol retrieval 
processor (GlobAlbedo-Aer-ATBD-V1.0, 2010) in the GlobAlbedo processing chain. The 
BBDR product generated by this processor will in turn be input to the albedo retrieval 
processor (GlobAlbedo-Albedo-ATBD-V1.0, 2010).  

Input and output data to the BBDR processor are in BEAM-DIMAP format. The following 
information bands are ingested by the processor: 

 

 Land-mask: A series of binary flags classifying pixels as clear-sky or cloudy, as well 

as land, snow cover or water, among other categories. 
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 VZA, SZA, RAA: Provided as tie-points in BEAM-DIMAP MERIS and AATSR data, 

and as information bands for VGT. 

 

 Digital Elevation Model (DEM): For correction of elevation (Rayleigh) effects. The 

GETASSE30 DEM integrated in BEAM is assumed to have sufficient accuracy. 

 

 AOD, CWV, OZO and uncertainties: AOD550 (plus uncertainty) is provided by the  

GlobAlbedo aerosol retrieval module. OZO data is also provided as tie-points with 

MERIS, and CWV and OZO are provided as information bands for VGT. 

Climatology values must be used for CWV in MERIS and for CWV and OZO in 

AATSR. 

 

 Spectral TOA Radiance or reflectance: Level-1b data for the three sensors. This is 

radiometrically calibrated radiance for MERIS, TOA normalised radiance for AATSR 

and TOA reflectance for VGT. 

 

 

Using information bands, the BBDR processor produces a series of outputs in BEAM-
DIMAP format projected to the MODAGG (MODIS Aggregation Product) sinusoidal 
projection system. The processor output consists of the following bands at the moment: 

 

 BBDR for three broadband spectral ranges (VIS, NIR, SW). 

 

 Uncertainty in BBDR including spectral covariance errors (6 bands: VIS-VIS, 

NIRNIR, SW-SW, VIS-NIR, VIS-SW, NIR-SW). 

 

 NDVI and uncertainty calculated from SDR for each data set to be processed. 

 

 Volumetric (RossThick) and geometric (LiSparseModisReciprocal) kernels and Nsky-

weighted integrals muliplied by the fraction of diffuse radiation at-ground D0 as 

specified in Eq. 5.5. 

 

 Meta-data: snow mask, digital elevation model and VZA, SZA and RAA. 
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All the resulting products are reprojected onto the MODIS sinusoidal grid1 using the 

Reproject operator implemented in BEAM-4.8. 

 

An example of BBDR and NDVI derived from MERIS Level-1b data with the methodology 

described in this document is displayed in Fig. 9. The original MERIS image was aquired 
over the Iberian Peninsula on 14/7/2003. The corresponding σΛ are in Fig. 22. 
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26.3 Assumptions and Limitations  

A number of assumptions and limitations are appreciated in the current version of this 
processor:  

 Lambertian surface reflectance assumption: A Lambertian surface is assumed 

when modelling the atmosphere-surface radiative transfer with Eq. 5.4, which was 

found to be necessary to have a processor capable of processing single acquisition 

with a minimum need for ancillary measurements. This assumption leads to 

smoothing the actual BRDF, which is taken into account in the albedo retrieval 

module (GlobAlbedo-Albedo-ATBD-V1.0, 2010), but the error associated to this 

assumption still affects the SDR and BBDR products.  

 Error sources considered in the error budget: It has been shown that BRDF 

effects in the surface reflectance and the N2B conversion process are in general 

the most important error sources for the SDR and BBDR products. However, no 

accurate description of these errors and of their dependence on the scene 

characteristics and the atmospehric state is yet available, but only average values 

depending on few parameters are considered so far. The development of a more 

sophisticated description of these terms is expected for upcoming versions of the 

processor. The inclusion of other error sources, such as the error covariance 

between the two AATSR views or topographic effects in the imaged area, will also 

be considered. 

 No dedicated processing of snow/ice pixels: SDR retrieval and N2B conversion 

are common to all land surfaces, including snow and ice, at this stage. The 

availability of input data (cloud mask, AOD, CWV) over snow pixels and the 

suitability of the N2B conversion approach proposed must still be confirmed.  

 Neglection of topographic effects: No correction of topographic effects, defined 

as the assumption of a wrong illumination angle in tilted surfaces, is performed by 

the processor. Even though the methodology for such a correction is available 

(Guanter et al., 2008), it is still under discussion if these topographic effects are 

intrinsic to the definition of albedo on a global scale so that they should not be 

removed from the SDR product. 

 Aerosol model: No pixel-wise variations of the aerosol model are enabled, but one 

single model is assumed to be characteristic for the land areas in a given orbit. The 

assumption of a fixed aerosol model is acknowledged to be a significant limitation in 

aerosol retrieval at a global scale. However, the impact on SDR retrieval is strongly 

reduced when the same aerosol models are used for AOD and SDR retrieval, as 

the errors tend to cancel out.  
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 Range of application of the SDR processor: The SDR/BBDR processor is 

designed to work in the range of scene conditions described in Table 1. This means 

that pixels with SZAs larger than 70deg and surfaces located higher than 8000 m 

will not be processed. Those limits are selected as the top SZA and elevation for 

which the atmospheric radiative transfer modelling can be considered to be 

relatively accurate.  
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27 Appendix I - Image Gallery 
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28 Appendix II – Instrument intercalibration 

Over the last decade, the CEOS-WGCV (CEOS Working Group on Calibration & Validation) have been 

developing guidelines and protocols for best practice under the aegis of Quality Assurance for Earth 

Observation, QA4EO (http://qa4eo.org). As a result of disparate practices over a wide variety of different 

test sites, QA4EO provides both a framework and a set of global test sites and standardised procedures for 

the radiometric calibration and inter-calibration of spaceborne visible and near IR sensors. In order to 

minimise the need for excessive demands on costly “ground truth” measurements, the first such QA4EO 

site was agreed to be DOME-C on the Antarctic continent. This strategy is discussed in Cao et al., (2010). 

The choice of DOME-C fulfils both the requirement for a near aerosol/dust-free pristine environment on a 

flat plane with minimal surface landscape features but more importantly, a site which is viewed many 

times every day by polar-orbiting satellites within ±1 hour each other. Such SNO (Simultaneous Nadir 

Observations) acquisitions allow different sensors covering similar spectral regions on the same or different 

platforms to be inter-calibrated. In the Antarctic, aerosols are very rare and below instrument detectability 

limit. However, Ozone absorption can change ToA (Top of Atmosphere) reflectance by a factor of 2-3 so to 

be able to normalise between one set of ToA-R and another we need to perform an Ozone correction 

which is sensor responsivity limited. 

As part of a CEOS-WGCV-IVOS (IR and Visible Optical Sensors) and QA4EO experiment 
to follow up the work of Cao et al. (loc.cit.) but focus on non-US sensors, level-1 data was 
acquired over DOME-C from AATSR, MERIS and VEGETATION2 for the December 2008 
to January 2009 time period. Ground-based Ozone measurements in Dobson units were 
acquired from the French Space Agency, CNES, although space-based measurements 
from GOME-2 or TOMS could have been employed in their place. Ozone was used in the 
radiative transfer scheme MODTRAN to calculate a set of spectral absorption coefficients 
that were then applied to each sensor. A set of spectral BRDF coefficient 
parameterisations were employed from Hudson & Warren (2006)  to correct for surface 
BRDF effects.  

The overall processing schema is shown in Fig. 23 below where  is the TOA reflectance, 

d is the Earth-Sun distance,  the solar zenith angle and the normalised TOA radiance is = 
L/E0  The TOA reflectance is then given by   
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Figure 23. Schematic of Sensor inter-calibration method  

A critical stage in this process is cloud masking as it is extremely challenging to detect clouds over snow/ice. 

The GlobAlbedo PixelID cloud detection was employed. From visual inspection of VEGETATION 2 B3 (NIR) 

this cloud mask looks reasonable in the 25 x 25km region around the DOME-C site as shown for one 

example in Fig. 24. 

 

Figure 24. VEGETATION 2 B3 (NIR) showing superimposed cloud masks from original 
(VITO-supplied) and new Pixel ID mask (orange). Also showing 25 x 25km area around 
the DOME-C site. 
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Using the cloud mask and the retrieved ToA reflectance, all pixels which were masked as 
cloud-free were used for all possible match-ups over the 2 month time period. A summary 
of the results is shown in Fig.25 below. 

 

 

 

Figure 25. Sensor intercalibration coefficients for AATSR, MERIS and VEGETATION for 
December 2008-January 2009 over DOME-C. Number of points refers to the mean value 
over a maximum of 225 pixels if all are cloud-free. 
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CNES have produced sensor degradation summaries for VEGETATION and 
VEGETATION 2 back to 1998 which will be available through CEOS from the SADE 
database whilst David Smith and colleagues at RAL have produced statistics from 1995-
2007 for AATSR-MERIS inter-comparisons but without Ozone corrections and over larger 
areas. GlobAlbedo will continue to work with CEOS-IVOS (through Dr Nigel Fox) to 
compile these sensor values over a longer time period. 
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Section D: Algorithm Theoretical Basis Document – Albedo retrieval 
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29 Introduction 

The aim of the GlobAlbedo project, as given in the SoW, is to support users’ requirements for a 

long time series of global land surface albedo. This is to be achieved by meeting the following 

objectives: 

 (1) Developing and delivering a multi-annual global albedo data set that has the 

potential to be sustained into the future using data from operational 

European satellites, such as the GMES Sentinels.  

 (2) Validating and providing intercomparisons of the albedo product against ground based and 

satellite based measurements.   

 (3) Providing the global user community with free and easy access to the albedo products.   

 (4) Demonstrating the utility of the albedo product by performing a series of scientific studies 

exploiting the data set produced. 

The ESA GlobAlbedo project will develop a broadband albedo map of the entire Earth’s 
land surface (snow and snow-free), which is required for use in climate modelling and 
research. An initial group of six users are working with the GlobAlbedo project team to 
define requirements and drive the project towards practical applications of the products.  

The final albedo products will include both black and white sky albedo over the entire 
globe with a core 8-day frequency and 1 km spatial resolution over the 1995-2010 time 
period. The product includes uncertainty estimates, and provides albedo integrated in 
three spectral broadband ranges, namely the solar spectrum (300-3000nm), the visible 
(300-700nm) and the near- and shortwave-infrared (700-3000nm).  Supplementary 
information of fAPAR is calculated, and a range of other datasets made available with the 
product. 

With the aim of deriving independent estimates making the best use of operational 
European satellites, GlobAlbedo will create a 15 year time series by employing ATSR-2, 
SPOT4-VEGETATION and SPOT5-VEGETATION2 as well as AATSR and 
MERIS.  Albedo retrieval will use an optimal estimation approach that produces a gap free 
product, using information from all available sensors at any given time. First order non-
Lambertian atmospheric interaction effects on the input satellite data are treated as part of 
the optimal estimation approach. The target accuracy requirements identified and agreed 
with the GlobAlbedo users in GlobAlbedo_RB_D01_v2_0 (2010) are: 

 Albedo >0.15, 20% and for Albedo <0.15, 0.015 

 

This document is a master document for a set of individual ATBDs on particular aspects of 
the overall algorithm to go from level-1b to albedo. The individual documents are: 

 Pixel identification:  GlobAlbedo_PixID_ATBD_V3.0 

 Aerosol retrieval:  GlobAlbedo_Aer_ATBD_V3.0 

 BBDR estimation:  GlobAlbedo_BBDR_ATBD_V3.0 
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 Albedo estimation:  GlobAlbedo_Albedo_ATBD_V3.0 

Each document provides an overview of its own particular aspect of the processing chain, 
includes information on assumptions and technical tradeoffs and describes each 
component of the algorithm in terms of physical background as well as mathematical 
breakdown.  

Each individual document provides the baseline for understanding the algorithm as well as 
for implementation in a software processor and its verification. 

This master document provides an overview of the whole processing chain and key 
aspects of each of the components. 
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30.2 Definitions  

 

Item Definition 

  

  

 

30.3 Abbreviations 

AATSR Advance Along Track Scanning Radiometer  

ATBD Algorithm Theoretical Basis Document  

BEAM  Basic Envisat Tool for AATSR & MERIS 
(http://envisat.esa.int/services/beam/)  

BBDR  Broadband Directional Reflectance 

BOA Bottom of Atmosphere 

BRDF Bidirectional Reflectance Distribution Function  

BRF Bidirectional Reflectance Factor  

ENVISAT Environment Satellite (http://envisat.esa.int)  

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/brdf_albedo_quality/16_day_l3_global_500m/v5/combined
https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/brdf_albedo_quality/16_day_l3_global_500m/v5/combined


 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 178 of 313 

EO Earth Observation  

ERS European Remote Sensing satellite  

ESA European Space Agency  

EUMETSAT European Meteorological Satellites Agency 

GCOS Global Climate Observing System  

GMES Global Monitoring for Environment and Security  

HCFR Hemispherical-conical reflectance factor 

HDRF Hemispherical-directional reflectance factor 

MERIS Medium Resolution Imaging Spectrometer Instrument   

MODIS Moderate Resolution Imaging Spectroradiometer  

NIR Near InfraRed  

S-2 GMES Sentinel-2 (http://www.esa.int/esaLP/LPgmes.html)  

S-3 GMES Sentinel-3 (http://www.esa.int/esaLP/LPgmes.html)  

SDR Surface Spectral Directional Reflectance, i.e. BOA spectral HCRF, 
approximating BOA spectral HDRF and equivalent to BOA spectral 
BRF if the surface is assumed Lambertian. 

SoW Statement of Work  

SPOT Satellite Pour l’Observation de la Terre  

SW Short Wave 

TOA Top of Atmosphere  

VIS Visible wavelengths 
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31  Mathematical and Physical Background 

31.1 Mathematical Description of albedo 

Surface albedo (see section 3 for symbol definitions) can be stated: 

 

  

   1 

 

The numerator in the equation Error! Reference source not found. is carried out over all 
ownwelling (i.e. incident, subscript i) and upwelling angles (‘viewing’, subscript v) (over 
hemispheres) and over all wavelengths in the waveband. Note that in equation 1,

. The downwelling spectral radiance at the ground is  in direction , 

being due to both direct and diffuse transmission of downwelling radiation in the 
atmosphere and enhancements due to multiple scattering between the surface and the 
atmosphere. Statement of the problem is simplified by considering first the case with no 

enhancement (i.e. a totally absorbing lower boundary), giving . In this case, we 

may simply split the downwelling spectral radiance into a diffuse term , a ‘sky 

radiance’ function over , and a direct term that is only defined in the direct solar beam: 

 

         

                      2a 

 

We define the integral of sky radiance: 

 

                2b 

 

 

and note from 2a,b that for isotropic diffuse illumination: 
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where  is the total downward transmission. More generally, we 

can consider a normalised sky radiance function: 

 

 

 

so that: 

 

 

 

 

  

(a) Nsky 650 nm (scaled 0.000 to 6.71) (a) Nsky 859 nm (scaled 0.000 to 6.33) 

Figure 31-1. Polar plot of normalised sky radiance for a solar zenith angle of 45o. 

 

Error! Reference source not found. shows polar plots of  generated with the sky 

adiance model of Zibordi and Voss (1989) (see also Liang and Lewis, 1996) for an optical 
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thickness of 0.106 at 550 nm. For this low optical thickness, there are no major differences 
between the normalized sky radiance at red and NIR wavelengths, although they will likely 
depart further for lower visibility (higher AOT). 

 

If we define the proportion of diffuse illumination for a totally absorbing lower boundary 
: 

 

 

 

then 

 

 

 

so that, in effect, the term  acts as an enhancement to the isotropic 

illumination case.
 

Multiple scattering between the ground and atmosphere can be effected through a 
Neumann Series providing an enhancement. 

 

 

 

where  is the atmospheric spherical albedo and  is the bihemispherical integral of the 

surface reflectance. For this component, we ignore directionality in both the atmospheric 
and surface signal, as it only occurs for second order plus scattering between the surface 
and atmosphere and the radiation can be assumed to be diffused. This is the same 
approximation made in the 6s radiative transfer code. It follows from above that: 
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We now define some utility functions that are integrals of surface reflectance. The 
directional-hemispherical integral of reflectance (the ‘black sky albedo’) over some 
waveband is: 

 

 

 

The bihemispherical integral of reflectance over a waveband  is: 

 

 

 

and an -weighted integral: 

 

 

 

If all terms are assumed constant over a waveband: 

 

 

 

We can also write: 

 

 

 

 

so that we can write albedo as: 
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which is particularly interesting because although the multiple scattering enhancement has 
an impact on absolute values of downwelling and upwelling radiance, it is greatly reduced 

when considering albedo as it depends on the difference  rather than the absolute 

value  and is further diminished by the proportion of diffuse illumination .  

We can approximate this expression for albedo then as: 

 

 

 

i.e. we can approximate albedo as a weighted sum of directional-hemispherical integral of 

reflectance  (black sky albedo) and a weighted bihemispherical integral5 .  

31.2 Mathematical description of atmospheric correction  

Although this document does not directly deal with atmospheric correction (see relevant 
sections of the ATBD), it is necessary to consider how samples of reflectance that have 
undergone this process fit into the general definitions of albedo and related quantities.  

The apparent reflectance  of the surface (i.e. that including atmospheric 

effects) over some waveband is related to the satellite measurement of radiance over that 

waveband , for some given atmospheric state  by: 

 

 

 

First, we note that if the surface is assumed Lambertian, the apparent reflectance can be 
given by: 

 

                                            
5 If the term ‘blue sky albedo’ had not already been appropriated for other purposes (the actual albedo, under 

specific illumination conditions expressed in equation 1 or the various approximations above) then this 

would seem an appropriate term for this integral  … it is the integral of black sky albedo over a 

normalised sky radiance function. 

  

RL - ¢ R L

   

RL

   

D
0L

   

¢ R L

   

V

   

¢ R L



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 184 of 313 

       3 

 

This is the formula most generally used to estimate surface reflectance from satellite data. 

The term  is in effect a local average Lambertian surface reflectance that accounts for 

so-called ‘environment radiance’ effects, i.e. multiple scattering between the atmosphere 
and both the ground area being represented within a particular pixel and the surrounding 

area. In the absence of further information, this is often approximated by . Indeed, in the 

pre-processing of surface reflectance products within GlobAlbedo, this is the case, so we 
can write: 

 

       4 

 

The target variable here is the Lambertian surface reflectance , which is an attempt to 

characterise the intrinsic surface property BRF . Equation 3 (or 4) will provide a 

different estimate of  as the viewing and illumination geometries vary, but this is not 

quite the same as .  

A fuller version of equation 3 that incorporates BRDF effects can be given after Vermote et 
al. (1997) as: 

 

      5 

 

where 

 

    6 

and 
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7 

 

is the directional-hemispherical reflectance in direction  (and ) weighted by the 

normalised sky radiance distribution. After Lyapustin et al. (2006) we could also describe 
these normalised sky radiance distribution terms as downwelling and upwelling normalised 

path radiance. Strictly, since  refers to a downwelling term and  an 

upwelling term, they are only equivalent functions for a homogeneous atmosphere. Since 
their only real role is as a normalised term weighting in an integral of reflectance, this 
distinction should not generally be of great importance. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 31-2. Atmospheric interaction mechanisms (from Vermote et al. 20066) 

                                            
6 http://6s.ltdri.org/6S_code2_thiner_stuff/6s_ltdri_org_manual.htm    
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Figure 2 demonstrates the linear interaction mechanisms in equation 6. The first involves 
direct transmission on the upward and downward path and interacts with the BRF. The 
second is an integral over the diffuse sky radiance field and a direct transmission in the 
viewing direction. The third is the complement of this for the solar direction. The forth is 
approximated by the proportion of downwelling and upwelling diffuse radiation and the 
bihemispherical integral of reflectance. We can think of these as linear interaction terms as 
they interact with the surface only once. The multiple interaction (non-linear in surface 
reflectance) term in equation 5 involves scattering back and forth between the surface and 
atmosphere. 

Note that in the above, all terms are assumed constant over the waveband. This is to 
allow expressions to be written to relate to satellite measurements over a finite waveband 
and is a good approximation for narrow wavebands. Following for the assumptions made 
in the surface reflectance products (i.e. ignoring the local spatial averaging or environment 
radiance in the multiple interactions between surface and atmosphere), we can consider 

. In arriving at equation 5, Vermote et al. (1997) assume that all second-order plus 
interactions between the surface and atmosphere are completely diffused. Lyapustin and 
Knyazikhin (2001) find that for second order plus interactions between the surface and 
atmosphere, the rate of change of radiance with scattering order is very close to constant. 
As a simplification of this concept, the treatment of multiple interactions by Vermote et al. 
(1997) is found to be accurate to within several tenths of a percent for low reflectance or 
low BRDF anisotropy, but Lyapustin and Knyazikhin (2001) claim the errors to be non-
negligible for higher surface reflectance and/or higher anisotropies. In such a case, they 
suggest that numerical codes should be used to calculate the first three orders of 
scattering, and the ratio of the second and third orders used to estimate the maximum 

eigenvalue term (effectively the product ) for improved estimates of multiple 

scattering for these cases. 

With the approximation above for no impact of environment reflectance, we note that 
equation 5 can be written: 

 

     8 

 

It has been noted (Hu et al., 1999) that the impact of ignoring the BRDF effects can lead to 
relative errors of between 2 and 7 percent in reflectance (average values for red and NIR) 
for a non-turbid atmosphere and up to 15% for higher optical thickness. Errors in the 
parameters of the model can be significantly higher than that, i.e. the ability to describe the 
BRDF shape from data derived from assuming a Lambertian surface is rather 
compromised.  

Whilst the Lambertian approximation has been widely used in atmospheric correction for 
land surface remote sensing, there is growing concern that the errors in reflectance 
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associated with this approximation may be quite significant. Wang et al. (2010) note that 
the impact of the Lambertian assumption in atmospheric correction assumption is (for a 
typical ‘upward bowl-shaped BRF) to under-estimate BRF at high zenith angles and over-
estimate at low angles. i.e. to dampen the apparent BRF. When propagated through 
integrals for albedo estimations, Wang et al. show the albedo estimate to be reduced by 
0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands. The 
accommodation of this dampening effect is essentially what equation 9 provides.  Hu et al. 
also note that a single iteration of approximations to the angular integral terms reduces 
errors to around 1 percent, even an optical thickness of 0.4. One other aspect that Hu et 
al. examine is the impact of assuming the atmospheric diffuse fields to be isotropic (i.e. 
ignoring ). Although their analysis is brief, it seems to conclude that if  is ignored, 

final errors in the BRF of around 1 percent can occur, even with iterative treatment of the 
angular integrals. This does not in itself make a strong case for including . 

Lyapustin et al. (2006) give a slightly different formulation for atmospheric influences to 
that of Vermote et al. (1997), although the core concepts are the same as presented here. 
Of particular note from the work of Lyapustin et al. is the use of a 1-D Green’s function of 
the atmosphere in calculating the diffusely-transmitted surface-reflected radiance at the 
top of the atmosphere.  

In looking to treat the BRDF effects, we can begin by equating equations 4 and 8 to derive 

a relationship between the primed bidirectional reflectance term  and the 

Lambertian equivalent reflectance
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which will tend to be small and which we can approximate as: 
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where 

 

 

 

This function is plotted in figure 3. For 

  

rLRL < 0.2 it ranges from 0 to close to -0.6. As 

, . We can now approximate the Lambertian equivalent reflectance by: 

 

 

 

Accepting this approximation, we can expand the  term from equation 6: 

 

                 9 

 

Interestingly, as  and , , so as 

   

rLRL
 increases, we lose the ability 

to determine the directional effects in the surface reflectance from a measurement. Also, if 
we write: 

 

  

 

then ,  being the Nsky–weighted integral of , and 

similarly for other integrals. Then: 

 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 189 of 313 

 

 

i.e. if we decompose a reflectance model  into an isotropic component 

   

f iso
 and a 

directional component  then the isotropic component is maintained as simply an 

offset to the weighted directional components, even when this approximation is used. This 
is a useful property resulting from the linearity of the expressions. One obvious implication 

is that if the surface is Lambertian, i.e. , then we obtain the correct 

interpretation 

  

RL = f iso
. Another point of interest is that if we were to define the offset term 

  

f iso = RL, then 

  

RL+ = 0 and it follows that: 

 

 

 

which is in many ways a more elegant expression of the atmospheric-surface coupling. 

We re-iterate at this point the comments of Lyapustin and Knyazikhin (2001) that under 

high anisotropy, high reflectance and (effectively) high

   

rL (very turbid atmospheres) the 

approximation in equation 8 are likely to become significant, inducing at least errors of 
greater than a few tenths of a percent (Vermote et al., 1997). 

That said, equation 9, derived from the ‘full’ coupling expression in equation 8, assuming 

only that second order plus impacts of 

   

RL - RL
 are negligible has two very attractive 

properties, namely: (i) it is a linear combination of reflectance integrals; (ii) it allows the 
non-Lambertian effects in surface-atmosphere coupling to be treated effectively as a post-
processing step to atmospheric correction, i.e. we can first proceed with an atmospheric 

correction routine that assumes the surface to be Lambertian (i.e. calculate ) with no 

prior knowledge of the surface BRF (or even its shape, as required in the 6s code), and 
incorporate the non-Lambertian interactions as part of the BRDF modelling scheme.  
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Figure 31-3.  as a function of  

 

We have now defined a method which allows Lambertian-equivalent reflectance to be 
interpreted as a weighted sum of reflectance integrals. This is more elegant that previous 
approaches by Vermote et al. (1997), Hu et al. (1999) and Wang et al. (2010) in that their 
methods require iteration to achieve what should be (if the approximations hold) the same 
result.  

The  term and the transmission terms and are estimated during the pre-

processing step, and  (equation 7) can also be derived.  Equation 9 contains four 

reflectance-related elements, all of which are normalised by : the first is the 

bidirectional term: the BRF , weighted by the proportion of direct illumination in 

the downwelling and upwelling directions. This treats radiation that is not scattered out of 
the direct path on the way down and up through the atmosphere. The second term is the 
directional-hemispherical integral of reflectance for the given solar illumination vector, i.e. 
radiation not scattered out of the direct path on the way down through the atmosphere, but 

scattered over 2sr at the surface and diffusely transmitted through the atmosphere. The 

prime in the term  is used to indicate that this upward diffuse transmission varies 

with angle, so the integral is weighted by the nomalised version of this term. The 
proportionate contribution of this term is a weighting by the proportion of downwelling 
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direct and upwelling diffuse illumination. The complementary third term is a directional-
hemispherical integral weighted by the directional distribution of downwelling (sky) 
radiance and scattered into the viewing vector. As noted above, the weighting function 
would be the same for both upward and downward transmission if the atmosphere were 
symmetrical in the vertical direction. The final term involves the bihemispherical integral of 
reflectance, which is an integral over all viewing and illumination directions, weighted by 
the appropriate directional transmission functions. If the surface is assumed Lambertian, 
all reflectance terms are equal and the various products of downwelling and upwelling 
diffuse/directional components sum to unity.  

We can use the 6s code (outputting some interim variables) to test the approximation 
developed above (against the full model of equation 8). We know from above that the 

highest errors will occur when anisotropy is high (
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may become important), 

especially for higher off-nadir angles), and when the product  is high (  high). This 

implies worst case scenarios with high zenith angles, high atmospheric optical thickness 
(AOT), bright surfaces, variable/anisotropic BRDF functions, and shorter wavelengths. To 
demonstrate the operation of the linear correction term under these circumstances, we 
produce simulations of TOA reflectance with 6s, using AOT (550 nm) of (0.9, 0.6, 0.3) 
(high to moderate) in the solar principal plane (-70 to 70 degrees) for a solar zenith angle 
of 45 degrees, for MODIS band 3 (470 nm). The surface reflectance function is specified 
using the RossThick (volumetric kernel) LiSparse (geometric kernel) kernels (see below 
for details). Specific model parameters are given with the simulations below, for two 
datasets with ‘bright’ and ‘moderate’ surface reflectance. 

Although we present the mathematics and physical concepts behind these linear kernel 
models below, it is of value here to investigate the influence of the coupling achieved in 
equation 9 on these kernels. For the present, it is sufficient to accept that a linear model of 

surface reflectance can be phrased . 

The kernels are plotted (continuous line) in figure 4 (a and b for  and 

 respectively) for the viewing/illumination angles described above. The  

terms are shown for simulations with model parameters 

   

f isoL, fvolL, fgeoL{ }=

  

0.4,0.4,0.0{ } and 

  

0.7,0.0,0.2{ } respectively for (a) and (b), which are bright, highly anisotropic surfaces. In 

the figures, the lines with symbols correspond to an AOT of 0.9 and those without an AOT 
of 0.3 (high, and moderate AOT, respectively). The lines labelled ‘modified kernel (Delta 
assumed zero)’ show the modification of the kernels according to equation 9 with . 

These express the impact of the weighted integral terms in equation 9 and are effectively 
dampened versions of the kernels. Note from above that there is no modification to the 
isotropic term. The dampening effect is much greater for AOT 0.9 than for AOT 0.3 
(remember, this is a ‘worst case’ scenario, in the blue band), with the kernel becoming 
almost flat and, significantly, changing shape with increasing AOT. 
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(a) Volumetric kernel terms 

 

(b) Geometric kernel terms 

Figure 31-4 BRF Kernels under varying atmospheric conditions and assumptions 
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The lines labelled ‘modified kernel’ include the impact of the  term in equation 9. As 

expected, these are only slight modifications from not including it, although they always 
show a decrease in the magnitude of the kernel. The significance of the change in 
magnitude of the kernels is that, if Lambertian-equivalent data are used to estimate the 
BRDF model parameters, the magnitude of the BRDF effects (the value of the non-
isotropic kernels) will be under-estimated. This may be quite significant, as shown in 
tables 4-1 and 4-2 below. These tables show the results of estimating (2 term) model 
parameters from the Lambertian equivalent reflectance, using the various forms of kernels 
shown above (namely: the bidirectional kernel (i.e. accepting the Lambertian assumption); 
the coupling equation 9, with ; and the full equation 9). The RMSE obtained when 

estimating the model parameters is also shown for these three scenarios.  

 

 True Lambertian  Full 

   

f isoL
 0.400 0.433 0.412 0.401 

   

fvolL
 0.400 0.188 0.333 0.398 

RMSE 1.000 0.971 1.000 1.000 

Table 4-31-1 (i) Bright, volumetric: AOT = 0.3 

 True Lambertian  Full 

   

f isoL
 0.700 0.534  0.654  0.703 

   

fgeoL
 0.200 0.086  0.168  0.201 

RMSE 1.000 0.984 1.000 1.000 

Table 4-1 (ii) Bright, geometric: AOT = 0.3 

 True Lambertian  Full 

   

f isoL
 0.200 0.214  0.203  0.200 

   

fvolL
 0.200 0.103  0.183  0.199 

RMSE 1.000 0.972 1.000 1.000 

Table 4-1 (iii) Moderate, volumetric: AOT = 0.3 

 True Lambertian  Full 

   

f isoL
 0.350 0.272  0.338  0.351 

   

fgeoL
 0.100 0.047  0.092  0.100 

RMSE 1.000 0.984 1.000 1.000 

Table 4-1 (iv) Moderate, geometric: AOT = 0.3 
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 True Lambertian  Full 

   

f isoL
 0.400 0.451  0.416  0.401 

   

fvolL
 0.400 0.079  0.317  0.397 

RMSE 1.000 0.902 1.000 1.000 

Table 4-31-2 (i) Bright, volumetric: AOT = 0.9 

 True Lambertian  Full 

   

f isoL
 0.700 0.468  0.646  0.702 

   

fgeoL
 0.200 0.032  0.161  0.201 

RMSE 1.000 0.909 1.000 1.000 

Table 4-2 (ii) Bright, geometric: AOT = 0.9 

 True Lambertian  Full 

   

f isoL
 0.200 0.224  0.204  0.200 

   

fvolL
 0.200 0.044  0.179  0.199 

RMSE 1.000 0.902 1.000 1.000 

Table 4-2 (iii) Moderate, volumetric: AOT = 0.9 

 True Lambertian  Full 

   

f isoL
 0.350 0.237  0.336  0.351 

   

fgeoL
 0.100 0.018  0.090  0.100 

RMSE 1.000 0.984 1.000 1.000 

Table 4-2 (iv) Moderate, geometric: AOT = 0.9 

 

Clearly, accepting the Lambertian assumption can cause significant error in the parameter 
estimation, this error being greater for brighter surfaces and for higher AOT. The error in 
the isotropic parameter is significantly less than that in the ‘shape’ kernel, but even this 
can have up to around 25% relative error. It appears that the isotropic parameter is over-
estimated for the volumetric scenarios and under-estimated for the geometric case. More 
significant, as expected from the discussion above, the volumetric and geometric kernel 
parameters can be severely under-estimated, by up to around 80% for AOT 0.9 or around 
50% for AOT 0.3. The RMSE is generally quite high (>0.9), so the ‘correct’ kernel type can 
still explain the vast majority of the variation in the Lambertian-equivalent signal. The 
RMSE in the isotropic parameter is 21% relative error and 69% for the non-isotropic term 
for the Lambertian case. 
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Using equation 9, even when assuming  gives a vary large improvement on this, the 

errors in both parameters being typically less than 10% relative, but in a few cases it may 
be as large as 20%. The RMSE (relative) for the isotropic term is 4.49% and 14.58% for 
the non-isotropic term. When the full expression is used, these relative errors are reduced 
to 0.25% and 0.49% respectively. It should be re-iterated that these tests are carried out 
under deliberately difficult conditions, and therefore the results using the full correction 
would seem to be a quite remarkable achievement with a linear (single pass) model. 

Here, we confirm findings from other papers that using a Lambertian assumption can lead 
to rather high errors in BRF. We observe the impact to be a reduction in BRF magnitude 
relative to the bihemispherical reflectance. In all cases examined here, the true BRF is 
around twice the departure of the Lambertian equivalent BRF from the bihemsipherical 
reflectance. The point of cross-over between the various reflectance curves is observed to 
often be quite close to nadir, but this is not always the case. The impact of a Lambertian 
assumption on BRF retrieved from atmospheric correction tends to be less for low zenith 
angles, although this somewhat depends on this cross-over point. For sensors with view 
angles restricted to close to nadir, the impact may often be quite small, but this is likely 
less true for bright targets: it is probably not possible then to estimate the BRF of bright 
targets from a single view angle, unless the shape of the BRF is assumed known. This is 
not a new finding, but one we can stress from these results. 

We find that a simple linear correction scheme is extremely effective in correcting the 
majority of non-Lambertian impacts. It has been observed by Hu et al. (1999) and Wang et 
al. (2010) that despite the Lambertian assumption causing potentially large errors in BRF, 
the errors in angular integrals of BRF (i.e. those we require for albedo estimation) are very 
much reduced, i.e. the positive and negative biases errors will broadly cancel each other 
out. We have not (yet) specifically investigated this point, but this is likely due to the error 
in the isotropic component using the Lambertian assumption being significantly lower than 
the other parameters. Since the weighting of the isotropic term is high relative to the other 
kernels in the linear models used here for albedo-related integrals of reflectance, it is most 
likely that (other things such as angular sampling regimes not being considered) 
processing data with the Lambertian assumption would give a good estimate of the 
bihemispherical reflectance. What should be examined in detail is the impact of the errors 
in the angular kernel parameters on the variation in directional-hemispherical reflectance 
with solar zenith angle, as this is likely dampened.  

As will be seen later, modelling the (Lambertian equivalent) observations via equation 9 

rather than treating them simply as direct estimates of  (as in all other schemes) 

allows for a very simple one-pass treatment of the diffuse illumination effects using linear 
kernel models. This is a novel aspect of the algorithm presented here.  

In summary, we have derived a forumaltion that can describe the ‘Lambertian equivalent 
reflectance’, the term provided by simple atmospheric correction schemes such as those 
used here, as a linear function of weighted integrals of surface BRF (equation 9). This 
means that instead of assuming that the atmospheric scheme directly provides BRF, we 
can treat the dampening effects of the Lambertian assumption directly by modelling their 
impacts as part of any further BRF modelling.  
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31.3 Modelling of spectral directional reflectance and associated integrals 

In the sections above, we have provided equations that relate estimates of Lambertian 
equivalent spectral reflectance to spectral BRF and related integrals, and also those 
relating these latter terms to albedo. The equations are essentially linear in nature, other 
than the multiple interactions between the surface and atmosphere that are of low 
magnitude in most cases (other than very high surface reflectance such as snow at visible 
wavelengths combined with a turbid atmosphere (i.e. high atmospheric reflectance)). The 
problem then can be stated as needing an estimate of the parameters controlling some 
model of spectral BRF. This could be achieved from sample observations of spectral BRF, 
or, via equation 8, Lambertian equivalent spectral reflectance. 

There are many models that could be considered for this task, but since we do not require 
any physical interpretation of the model parameters a fully physical model is not necessary 
here. Rather, we can use the simplest form of model that is capable of well describing the 
spectral BRF of all (or as many as possible) surface types. A further consideration is that 
the model should be rapid to calculate and fit straightforwardly into an optimal estimation 
framework. These criteria suggest the use of ‘parametric’ or so-called ‘semi-empirical’ 
BRF models, such as the kernel-based models or RPV family. We might also loosely term 
these approaches to modeling ‘additive’ and ‘multiplicative’ kernel methods. Both 
approaches fulfill the fundamental requirement that they should be general in their 
application (i.e. capable of describing the angular variation of reflectance for a wide variety 
of cover types). Multiplicative formulations, exemplified by the RPV and MRPV models 
(Lavergne et al., 2006), are semi-analytical expression in which parameters are either 
exponent or straight multiplicative terms. The models tend to be near-linear under a log 
transform which can facilitate (linear) inversion, although due to the generally simple 
analytical form of the models, partial derivative expressions can easily be formulated to 
permit non-linear regression. Additive models, exemplified by the Ross-Li model 
combinations used in generation of the MODIS and MSG BRDF/albedo product streams 
(e.g. Schaaf et al., 2002) are essentially phrased as proportionate mixtures of archetype 
scattering behaviours (isotropic, volumetric and shadowing). It is generally found that there 
is little difference in any angular integral products using these two methods (Lucht and 
Lewis, 2000; Lyapustin et al., 2006), although each may have particular advantages and 
disadvantages under particular scenarios. 

One particular advantage of the additive kernel models is their linear form. This has 
several implications, including ease of inversion and error propagation, linear spatial 
scaling of model parameters, the ability to pre-calculate angular integrals of the kernels 
(Lewis, 1995), and also, as we will show, insensitivity of the ordering of the two steps 
involved in albedo inference noted above. This latter quality will prove particularly 
important for GlobAlbedo applications, and so all examples below will proceed within a 
framework of additive kernels. Further, the practicalities of equation 8 further suggest that 
a model that is linear in form would be of value.  

For these various reasons we therefore opt for linear kernel-driven models in this product. 
Within this family of models, there are several options. The most obvious choice is to use 
the same set of kernel models as the MODIS BRDF/albedo product, as this would afford 
opportunities to directly compare GlobAlbedo and MODIS albedo at the model parameter 
level. Indeed, the same kernel set is used operationally for the SEVIRI albedo product, 
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and can therefore be seen as an ‘accepted’ fundamental set that we may call Isotropic, 
RossThick and LiSparseModisReciprocal. kernels Options that should be considered are: 
(i) the hotspot enhancement model of Maignan et al. (2004); and (ii) the LiTransit model of 
Li et al. (1999).   

A linear model of this family can be written: 

 

                 10 

 

where the model parameters 7,  are defined as a function of 

wavelength. The angular kernels  (for x=iso, ) are functions of viewing 

and illumination angle only.  

 

The concept behind the kernel models is ‘semi-empirical’ in that they start from physically-
based principles and are then combined in an empirical manner. Two main versions of the 
volumetric kernels exist: RossThick and RossThin, being based on slightly different 
approximations in the linearization process (optically thick, and optically thin media, 
respectively).  The ‘theoretical’ basis for these models is a solution for first order scattering 
from a medium of infinitesimal scatterers (leaves) over a soil background. The leaves are 
assumed uniformly distributed, with a spherical angular distribution, and of equal 
reflectance and transmittance . The soil is assumed Lambertian, of reflectance . 

These assumptions give (Roujean et al., 1992; Wanner et al., 1995): 

 

 

 

with  

 

 

where  is the cosine of the phase angle (for relative 

azimuth ). All angles are in radians. If LAI is assumed high,  where B is 

assumed constant, equal to an average of the zenith angle function . 

This step is a linearization of the model so it can be expressed: 

                                            
7 Note that when convenient in formulae below, we refer to these parameters by an index, so that 
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with 

 

 

 

Note that the angular kernel  is designed to equal zero at nadir viewing and 

illumination (following Roujean et al., 1992). Implementation of this kernel is aided by 
taking absolute values of view zenith angles whilst adding  to the relative azimuth where 
the view zenith was negative. Relative azimuth angles of zero, with the same viewing and 
illumination zenith angles, define the hot spot direction. 

 

Breon et al. (2002) (see also Maignan et al., 2004) criticize the Ross kernel models 
because although they are created to mimic first order scattering, they ignore enhanced 
reflectance in the backscatter (hot spot direction). They suggest a ‘hot spot’ model for 
these kernels, which for RossThick8 gives: 

 

 

 

where the parameter  controls the angular width of the hot spot feature. For low phase 

angles , the enhancement factor is equal to 2. At  the enhancement factor is 

1.5, and for  it tends to unity. There are two main arguments for the inclusion of this 

modification: (i) the hot spot is a real feature of first order volumetric scattering that is 
otherwise ignored; (ii) Observations from POLDER over a wide range of cover types 
(Breon et al. 2002) suggest that the parameter  might reasonably be fixed to a value 

equating to 1.5o. The arguments for not including this term are: (i) most of the sensors we 
are dealing with very seldom have sampling near to the hot spot; (ii) any missing hot spot 
effects will likely be compensated for by the geometric kernel (see below); (iii) multiple 

                                            
8 Note that the normalisation term is left out here. 
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scattering is assumed isotropic in these models (see below) but any failings in this 
assumption are likely to be compensated for in the volumetric kernel. Including a strong 
hot spot effect based on considerations of first order scattering might therefore over-
emphasise the feature, especially when poorly constrained by sampling; (iv) The hot spot 
feature at the angular widths of interest here has little impact on angular integrals 
(although it does have an impact on angular normalisation); (v) the MODIS processing 
chain does not use this modification, so if we include it here we will not be working with the 
same kernel set as that sensor. In fact, none of these reasons for not using this 
enhancement are very strong, but the latter, the fact that the kernel parameters would not 
be consistent with MODIS, has a practical impact for the optimal estimation framework 
used here, so we will not include this term. 

Several options exist for the geometric kernel. The first to be explicitly formulated for this 
form of modelling is that due to Roujean et al. (1992). A family of kernels was defined as 
part of the ‘ambrals’ model for MODIS processing (Wanner et al., 1995). As with the 
Roujean geometric kernel, they are derived from considerations of the variation in the 
proportion of sunlit and shaded areas of a pixel viewed, as a function of the viewing and 
illumination geometries. The so-called Li kernels (in ambrals) are derived from 
consideration of these terms for a set of spheroids on a flat plane. An import term in all 
such considerations is the horizontal distance between the Sun and view directions. 
LiSparse is a model of the proportion of sunlit canopy (protrusion) and ground (  and 

) with mutual shadowing effects ignored. The crown spheroids have vertical length 2B and 
horizontal width 2R and are centred at distance H above the ground. The crown and 
ground are assumed to have the same brightness term, C, so: 

 

 

 

where: 

 

 

 

 

 

Since  may lie outside of the bounds [-1,1] it needs to be limited to is range. 

 

   

KC

   

KG

  

Rgeo = C KC + KG( )

   

KC = 1- exp -
c

¢ m v

ì 
í 
î 

ü 
ý 
þ 

æ 

è 
ç 

ö 

ø 
÷ 

1+ cos ¢ x ( )
2

   

KG = exp -c
1

¢ m v
+

1

¢ m i

é 

ë 
ê 

ù 

û 
ú 1- t + cos t sin t[ ]

ì 
í 
î 

ü 
ý 
þ 

  

cos t



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 200 of 313 

All primed zenith angles are defined by the function: 

 

 

 

Here,  is the canopy cover (nadir view). As we can see, even under these simplifying 

assumptions, the (first order) reflectance depends (other than an overall brightness term 
C) on three parameters: canopy cover, spheroid aspect ratio, and spheroid relative height 
above the ground. 

 

In the sparse approximation,  is assumed small, so , which gives: 

 

 

 

 

 

For the dense approximation, a concept of mutual shadowing is incorporated and the 
exponential term is assumed small. This gives rise to: 

 

 

 

Soon after the publication of Wanner et al. (1995) it was recognised that there would be 
some disadvantages to these kernels not being reciprocitous, so slight modifications were 
made, giving: 
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For MODIS processing, the parameter H/B is fixed to 2.0 and B/R to 1.0 for the Sparse 
kernel and originally 2.0 and 2.5 respectively for the Dense kernel. Here, as in the current 
MODIS product, we use only the LiSparseReciprocal kernel (with H/B = 2.0 and B/R = 
1.0). 

A criticism levelled at the Li kernels (Li et al., 1999; Gao et al., 2000) is the rather rapid 
rate of change of the sparse kernels as a function of angle for high zenith angles. This 
leads to a new compromise kernel, LiTransit for which: 

 

 

 

This kernel modification should seriously be considered for GlobAlbedo, but for the 
moment, we choose not to employ it to allow backward compatibility with the MODIS 
product. 

Error! Reference source not found. and 9 show examples of the main kernel types for a 
ange of solar zenith angles. Error! Reference source not found. shows the non-
reciprocal version of the Li kernels. The reason for this is that those are then comparable 
to the figures in the original paper by Wanner et al. (1995), so a comparison of these 
figures and those from that paper serve to validate the kernel model implementation9.  

It also shows the Li kernels with the hot spot modification noted above. Figure 9 shows the 
‘standard’ versions of the kernels.  

Lewis (1995) describes some of the implications of using linear models for albedo 
estimation. Of particular relevance here is that: 

 

                11 

 

 where 

 

                                            
9 A publicly-available test version of the kernel code is implemented by Prof. P. Lewis in 
python and is available for download from: 
http://www.geog.ucl.ac.uk/~plewis/globAlbedo/Kernels.py. As an example download 
http://www.geog.ucl.ac.uk/~plewis/globAlbedo/tester.py and run this by typing: 

computer% python tester.py 

This will then produce plots comparable with the kernels defined in Wanner et al. (1995), 
and by changing the options, any of this family of kernels. 
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for any , i.e. the separation of angular and spectral terms in equation 10 facilitates 

dealing with angular integrals in any equations involving BRF. This applies both to the 
estimation of albedo and to the relationship between Lambertian equivalent reflectance 
and BRF. 

Thus, we can write the ‘black sky albedo’ as: 

 

 

 

with 
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(a) SZA 0o 

 

(b) SZA 30o 

Figure 31-5. Linear Kernels (Principal plane) -- non-reciprocal Li and Ross HS 

 

(a) SZA 0o 

 

(b) SZA 30o 

 

(c) SZA 60o 

 

Figure 31-6. Linear Kernels (Principal plane) – Reciprocal Li 

 

The bihemispherical integral of reflectance (‘white sky albedo’) becomes: 
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And similarly, the -weighted integral: 

 

 

 

 

 

so that the spectral albedo can be written: 

 

                

12 

where 

 

 

 

 

 

Note that  is a function of wavelength, through its dependence on the proportion 

of diffuse illumination and also through any spectral dependency in . 

Equation 12 gives albedo in terms of the kernel model parameters and functions (integrals 
and weighted integrals) of the kernels. All integrals can be pre-computed and 
approximated by analytical functions (as supplied with the MODIS BRDF/albedo product 
for non-weighted components) or stored as look up tables (as a function of solar/viewing 
zenith angle and atmospheric state). 
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Equation 11 also has consequences for our treatment of Lambertian equivalent 
observations (c.f. equations 8 and 9). In particular, ignoring for the moment integrals over 
waveband, our model for Lambertian equivalent reflectance becomes simply: 

 

                 

13 

 

where 

 

                

14 

 

                           15a 

 

Incorporating the non-linear correction effects in equation 9 and considering these as 
average impacts over a waveband

   

L: 

 

                          15b 

 

Equation 14 (& 15a or 15b if the non-linear effects are included) defines modified versions 
of the kernels to be used in modelling the Lambertian equivalent reflectance. This means 
that if parameter estimation proceeds using these definitions rather than simply those in 
equation 10, the impact of the angular integrals on reflectance (including the directional 
distribution of sky radiance) is automatically taken into account. This is a powerful 
concept, since it potentially avoids the need for iteration to account for BRDF effects in 
atmospheric correction. Practically then, any scheme designed to provide optimal 
estimates of the model parameters from satellite observations can proceed with 
atmospheric correction based on Lambertian surface assumptions, so long as these 
modified kernels are used rather than the original definitions. Since all of the modifications 
to the kernels rely on estimates of atmospheric parameters, it makes sense for these 
modified kernels (equation 14) to be output as part of the atmospheric correction scheme. 
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Note also that in defining a general scheme of processing, if data which have been ‘fully’ 
atmospherically corrected happen to be used as input data, this is simply achieved by 
setting the diffuse D terms to zero.  

31.4 Modelling albedo 

Equation 12 above provides the recommended formula to estimate albedo. For this 
estimate, detailed knowledge of the atmospheric state is required to provide weighted 
angular integrals and the atmospheric spherical albedo for multiple interaction effects. 
Since the numerator of equation 12 will tend to be quite small, except for strongly 
anisotropic bright surfaces (e.g. snow), we can more generally consider albedo to be 
adequately represented by its linear approximation (i.e. ignoring the denominator), so we 

can write broadband albedo  as: 

 

               16a 

 

where, as before  

 

                16b
 

 

The term  is simply the directional-hemispherical integral of reflectance (black sky 

albedo). The term  is more complicated, being the  weighted bihemispherical 

integral of . This term depends on atmospheric properties and would need to be 

defined in a LUT for each kernel as a function of solar zenith angle and atmospheric 
properties. The same is true of the proportion of diffuse radiation . In calculating 

albedo in a satellite albedo product then, we have to choose some set of values for the 
atmospheric terms. Since atmospheric measurements will not always be available (e.g. 
when there are no observations) and will in any case vary spatially and over a compositing 
period, some fixed values should be used. Clearly, albedo varies significantly with solar 
zenith angle for most cover types, so a reference solar zenith is also usually decided upon 
for product output, generally local solar noon. 

From the assumed fixed atmospheric properties and reference solar zenith angle, we can 

calculate ,  and  (along with the terms in the numerator of equation 12 if 

required) to output a standard albedo product10. 

                                            
10 Technically, these terms will also depend on the altitude of the site being observed, but this can be ignored 

for the standard albedo product. 
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Many users will not simply want a ‘reference’ albedo at some standard sun angle and 
atmosphere but will want to apply either equation 12 or equation 16 themselves to data. In 
such as case, the users need to calculate all of the relevant atmospheric terms and 
weighted angular integrals.  

For cases when the atmospheric optical thickness is low and the solar zenith angle not too 
high (Lewis and Barnsley, 1994), and also the brightness and anisotropy of the ground not 
too great (otherwise the denominator of equation 12 will have more of an impact) it is 
appropriate to use a simpler formulation for estimating albedo, i.e. equation 16 with: 

 

 

 

i.e. using the unweighted bihemispherical integrals of the kernels. Provided the user can 
estimate the proportion of diffuse illumination, albedo can then be very simply estimated 

by using fixed values of , the ‘white sky’ integrals.  

The difference between the ‘white sky’ kernel value for this simplified ‘isotropic 
illumination’ and the ‘full’ Nsky-weighted expression is shown in figure 10. The ‘full’ 
expression is much more sensitive to aerosol loading than the isotropic approximation as 
this not only alters the proportion of diffuse illumination, but also the directional distribution 
of the downwelling radiance (or its normalised equivalent Nsky).  
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Figure 31-7. Angular integrals of kernels for varying aerosol optical depth (AOD) 
and solar zenith angles for MODIS red and NIR bands. The left column shows terms 

 assuming isotropic illumination for the diffuse component. The results in 

the right column are for Nsky-weighting of the terms. From Roman et al. (2010). 

 

Unweighted angular integrals of the kernels are given in Lucht et al., (2000) as polynomial 

functions and fixed values for . The directional-hemispherical integral of reflectance as a 
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function of solar zenith angle  can be approximated for most practical purposes by the 

following for kernel x: 

 

 

 

with the polynomial coefficients given by: 

 

Term Isotropic (iso) Ross-Thick (vol) Li-Sparse (geo) 

g0 1.0 -0.007574 -1.284909 

g1 0.0 -0.070887 -0.166314 

g2 0.0 0.307588 0.041840 

 1.0 0.189184 -1.377622 

Table 31-3 Polynomial coefficients for black- and white-sky albedo 

 

These coefficients fit nearly perfectly up to solar zenith angles of 80o (Figure 11).  

 

 

Figure 31-8. (From Lucht et al., 2000) Polynomial representation of black sky albedo 
as a function of solar zenith angle. Values shown for RossThick and of the 
LiSparse-R kernel (solid lines) and their polynomial representations (dotted lines). 
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Also shown is the value of the white-sky albedo as a constant for each kernel 
(dashed lines). 

 

31.5 Spectral considerations 

The task here can now be considered as providing an optimal estimate of the kernel 
model parameters from some set of satellite observations (from MERIS, (A)ATSR(-2) and 
VEGETATION sensors). One route to this would be to process the estimates of spectral 
BRF (or rather Lambertian equivalent reflectance) from each sensor independently to 
(narrow band) spectral parameter estimates and to then combine these. Since the spectral 
sampling of each instrument is different, this is not a straightforward task however. 
Further, whilst spectral albedo at the (typically) narrow wavebands of the satellite sensors 
may be of value for some applications, they are not a required component of the 
GlobAlbedo product.  

The narrow-to-broadband conversion of the Lambertian equivalent reflectance is 
performed by the GlobAlbedo spectral directional reflectance/broadband directional 
reflectance (SDR/BBDR) processor. A detailed description of this procedure is provided in  
the GlobAlbedo SDR/BBDR ATBD. Two key aspects of the narrow-to-broadband 
conversion procedure in GlobAlbedo must be remarked here though: 

a) Narrowband reflectance is converted to broadband in three spectral intervals by means 
of a linear weighting process. This preserves the linear nature of the GlobAlbedo 
processing chain, the advantages of which have been described earlier in this document. 
The methodology proposed by Liang (2000) has been reproduced in order to calculate the 
conversion coefficients for the spectral reflectance data derived from the three instruments 
in GlobAlbedo in a consistent manner, and also for the broadband conversion of the D and 
Nsky parameters used to performe angular integrals  (e.g. equations 6 and 7).  

b) Broadband conversion is performed on directional reflectance rather than on albedo 
data, i.e. spectral integration is performed before angular integration. This is a unique 
feature of the GlobAlbedo processing chain with respect to other albedo retrieval 
schemes, such as that of MODIS. Interchanging the angular and spectral integrals of 
surface reflectance is enabled by the linear nature of the GlobAlbedo processing chain. In 
addition, converting all observations to broadband has other advantages: the scheme 
works easily with data from any sensor (e.g. data from forthcoming missions such as 
PROBA-V or Sentinel-3 could be incorporated simply by converting all such data into BB 
reflectance estimates); there is reduced complexity of the processing chain; optimal use is 
made of available samples (e.g. single observations not sufficient to estimate model 
parameters, but can be used here). Also, some issues arise from this. In particular, in 
order to enable the combination of the R, D and Nsky parameters in broadband space, it 
must be assumed that the integral of the product is the same as the product of integrals. 
Such a condition is fulfilled by those variables due to it can be assumed that they are not 
correlated in either spectral or angular dimensions. 
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31.6 Parameter estimation 

31.6.1 Unconstrained parameter estimation 

This stage of processing assumes that we have as ‘data’ input a gridded product of BBDR 
data for the three wavebands considered, along with associated uncertainty information.  

Thus, for some pixel over location L, we have vectors (of dimension 1x3) of observation-
derived (‘observation’) of (Lambertian equivalent) reflectance  for some set of times 

. Each observation has its associated uncertainty matrix  of dimension 

3x3, and a (9x3) vector of modified kernel terms  (defined in equations 14 and 15) for 

each of the three kernels, for each of the three broadband: 

 

 

 

where  is the modified kernel for waveband b and kernel x.  Thus, our model of 

(Lambertian equivalent) reflectance,  is: 

 

 

 

where  is the (1x9) vector of model parameters. The estimation of this vector  is the 

target of our optimal estimation framework. If there were very many samples of  for 

each L and t (over a wide range of viewing and illumination angles), then we could attempt 
an unconstrained estimation of  from the observations . However, from satellite 

data, we are restricted in angular sampling by the sun and view angles at particular sensor 
overpasses, and further limited for optical data by missing samples due to cloud (or cloud 
shadow). Such an unconstrained estimation is usually phased as a minimisation of a cost 
function  with an L2 norm: 

 

                  17 

 

for a set of N observations over the time period of interest. For a linear model, such as we 
have here, we have an analytical solution to the estimation (dropping the location 
subscript for convenience):  
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                  18 

 

This can be phrased in vector-matrix form as: 

 

                   19a 

 

where  is a 9x9 matrix and  a 1x9 vector.  

 

A measure of the goodness of fit of the model to the observation set is 2: 
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From 19b then, we see that since we already have access to the first and second terms on 

the RHS, we need only keep track of the third term 
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31.6.2 Uncertainty and angular sampling 

An estimate of the model parameters at time t, , is obtained from equation 18 using a 

linear solver. The uncertainty in the estimates of parameters is given by (Lucht and Lewis, 
2000): 
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19c 

 

where  is a 1x9 vector expressing a linear combination of model parameters. Thus, 

setting  gives the uncertainty in the first element of .  

There are two problems with this solution however: (i) the angular sampling available 
tends to mean that the estimate of the model parameters is only poorly determined. In 
many cases, N can be rather small and the problem may even be under-determined; (ii) 
as stated, equations 17 and 18 assume that the model parameters are constant over the 
time period of the observations. This introduces a smoothing to the parameters.  

The MODIS BRDF/albedo product (Schaaf et al., 2002) uses equation 18 to solve for 

model parameter estimates with  as an identity matrix (i.e. assuming observation 

uncertainties unknown or constant). In this case  expresses the weight of determination 

of the linear parameter combination, a measure of how well-resolved it is for a given 
angular sampling configuration. Figure 12 shows some examples of the impact of angular 
sampling on the linear model parameters. The weight of determination is considered here 
as a ‘noise amplification factor’ as it provides the uncertainty relative to the observation 
uncertainty. All angular configurations assume no cloud impacts. Provided there are 

sufficient observations, cloud impacts can be considered as a  modification to this 

term. Sampling windows of 16 days are considered here. In panel (a), the nadir 
reflectance at mean solar zenith angle is considered (so-called NBAR). This is seen to be 
quite a stable measure, as it is effectively an interpolation over the set of observations. 
Similarly, the black sky albedo (directional-hemispherical reflectance) at mean solar zenith 
angle is effectively an interpolated estimate and is well-constrained. The uncertainties in 
these terms is seen to decrease with increasing latitude due to orbital convergence. Terms 
which may be outside of the convex hull of angular sampling, ‘extrapolation terms’ of 
course have higher uncertainties: the nadir reflectance and nadir illumination angle (the 
isotropic parameter) and the black sky albedo at nadir illumination have significantly higher 
uncertainties, and these uncertainties tend to increase with increasing latitude as the solar 
zenith angle of the observations at the overpass time is rather distant to this nadir 
configuration. This means that the isotropic parameter may not always be a stable term to 
estimate, but reflectance values or integrals nearer to the domain of the actual angular 
sampling will be more stable. Panel (e) considers the bihemispherical integral of 
reflectance (white sky albedo). This has generally higher uncertainty than most other 
terms, though of a similar order of magnitude to the isotropic parameter. The decrease 
with increasing latitude is due to the greater number of observations and range of solar 
zenith angles at higher latitudes. Panel (f) shows that estimates of black sky albedo as a 
function of solar zenith angle are heavily conditioned by the angular sampling regime. 
Estimates at high solar zenith angles are generally unreliable.  

Figure 13 shows the weight of determination of the linear kernel model parameters (other 
than the isotropic term shown above). The uncertainty in the Ross-Thick parameter in 
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particular can be rather high, but this decreases with number of samples (i.e. with 
increasing latitude) and range of solar zenith angles. The uncertainty of the Li-Sparse 
parameter is of a similar order of magnitude to the isotropic term, although as the absolute 
value of this parameter is generally much smaller than the isotropic term, the relative 
uncertainty can be high. Figure 14 compares some of the terms in figure 12 with those 
obtained from using the MRVP model. The dashed lines represent results from the linear 
kernels and the solid and dotted lines those from MRPV. The results are very similar for 
both, indicating that uncertainty in these terms is largely a matter of angular sampling, 
rather than the particular model used. That said, the two models are of course different, 
and so may produce rather different results in extrapolation (i.e. outside of the domain of 
the angular samples). 
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Figure 31-9. From Lucht and Lewis (2000). Noise sensitivity of the RossThick-
LiSparse BRDF model. Weights of determination (noise amplication factors) are 
shown as a function of latitude for different 16-day time periods throughout the first 
half of the year, the time progressing through solid, dotted, dashed and dashed-
dotted curves (days of year 0, 48, 96 and 144). Panel (f) shows the noise sensitivity 
of black-sky albedo extrapolation as a function of sun zenith angle for sample 
latitudes -60O, -40O, 0O and 40O latitude (solid, dotted, dashed, dashed-dotted 
curves), for sampling during the first 16-day period of the year. The terms ‘mean 
sun zenith’ and ‘nadir sun’ refer to evaluations at the mean sun zenith angle at 
which the observations were made at each respective latitude and for the case of a 
solar zenith angle extrapolated to nadir. 
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Figure 31-10. From Lucht and Lewis (2000). Impact of angular sampling on 
estimates of the linear model parameters. Lines have same meanings as in figure 

12. 

 

Figure 31-11. From Lucht and Lewis (2000). Noise sensitivity of the modified RPV 
BRDF model.  

Inferred equivalent weights of determination (noise amplification factors) are shown as a 
function of latitude for the first 16-day period of the year and for the red (solid curves) and 
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near-infrared band (dotted curves) of four different land cover types. Also shown are the 
weights of determination for the RossThick-LiSparse BRDF model (dashed curves).  

 

 

 

 

 

Figure 31-12. From Barnsley et al. 1994. Angular sampling of MODIS instruments 
(labelled MODIS-N) for the two platforms (Terra and Aqua). Concentric rings denote 
10° increments of view zenith angle, ranging from 0° (i.e. nadir) at the center of the 
plot to 90° at the edge. Radial lines denote 15° increments of view azimuth angle, 
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where 0° = north and 180° = south. N.B. The width of the 'envelope' lines has been 
exaggerated for diagrammatic purposes. 

 

 

 

 

 

Figure 31-13. From Barnsley et al. 1994. Angular sampling of ATSR-2 instrument. 
Concentric rings denote 10° increments of view zenith angle, ranging from 0° (i.e. 
nadir) at the center of the plot to 90° at the edge. Radial lines denote 15° increments 
of view azimuth angle, where 0° = north and 180° = south. N.B. The width of the 
'envelope' lines has been exaggerated for diagrammatic purposes. 

This discussion has demonstrated that angular sampling plays a crucial role in providing 
reliable estimates of albedo model parameters. For the sensors under consideration here, 
VEGETATION has rather similar angular sampling to MODIS, and so will provide results 
similar to those above (though of course, from 2002 two MODIS instruments are used for 
the MODIS BRDF/albedo product, so the sampling number is increased). The general 
pattern of sampling from a wide field of view sensor such as MODIS or VEGETATION is 
demonstrated in figure 15. Variation in view zenith angle is achieved from cross-track 
sampling, leading to a slightly curved line in the polar plot. The relative azimuth of the 
sampling varies with latitude and time of year. The highest information content data is 
generally achieved through sampling in the solar principal plane. In the example in figure 
15, the sampling is almost entirely cross principal plane, which is sub-optimal sampling. 
This relative azimuth angle and the number of samples are the main factors that impact 
the weight of determination shown above. 

Figure 16 shows typical angular sampling possible from the ATSR-2 configuration 
(similarly AATSR) instrument. The pattern of angular sampling is clearly rather different to 
that in figure 15. There are essentially two clusters of samples, arising from the nadir and 
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off-nadir views of the sensor. The relative azimuth of the off-nadir samples rotates as a 
function of time of year and latitude. The coverage of the viewing hemisphere is rather 
limited, so estimates of model parameters and angular integrals will have higher 
uncertainties that that for VEGETATION or MODIS. MERIS angular sampling (not shown 
here) is similar to the near-nadir samples of figure 16, with a slightly more limited angular 
range. 

For a product based on VEGETATION, MERIS and (A)ATSR, there is a concern that the 
angular sampling may not be sufficient for robust parameter estimation (the problem is ill-
posed). This will be a particular problem for processing years when only ATSR-2 data are 
available, but is of general concern in solving for albedo estimates from sparse angular 
samples from satellite observations. In such a case, various constraints to the problem 
must be considered.  

31.6.3 Temporal smoothness constraint 

One of the most common approaches to dealing with ill-posed inverse problems is to 
apply regularisation. This is discussed in detail in e.g. Twomey (1977) or Hansen et al. 
(2006). In effect, this involves using one or more constraints to the cost function in 
equation 16. In practice, regularisation constraints are often applied to inverse problems, 
although they may not always be explicitly stated. The ‘unconstrained’ inversion of the 
model given above gathers samples over a 16 day window, and assumes that the 
parameters are constant over that time period. This is in itself a form of regularisation: the 
resulting model parameters will be a ‘smoothed’ version of the ‘true’ time-varying 
parameters. 

A typical explicit example of regularisation is a first difference constraint (i.e. the parameter 
value tomorrow will be the same as today, to a certain degree of tolerance). This can be 
phrased as a model: 

 

 
 

with an uncertainty matrix  connecting these. Note that the parameter vector  must 

now be extended to include parameter values for each day, t. We will call this (1x(9xN)) 
vector simply . A first order differential operator on is , so the discrete differential of  
is . With this constraint, we are able to provide estimates of the parameters at any 
desired time resolution (though 1 day would be a typical time step). The constraint can be 
included in the cost function: 

 

                 20 

 

where now we have a full  matrix of (3xN)2 and full  matrix of (9xN)2. The 

minimisation of this cost function is obtained via: 
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                  21 

 

This approach was used by Quaife and Lewis (2010) to add a smoothness constraint to 

kernel-driven model parameter estimation. If  is considered constant, it can be 

represented by a scalar . This term then is the uncertainty in the constraint, i.e. the 

uncertainty in enforcing the parameter at time t+1 to be the same as at time t, though we 
might also note that it is a Lagrange multiplier for the constraint. This form of first order 
difference constraint is directly equivalent to using a zero-order process model (i.e. the 
model is that ) in a Kalman smoother (Quaife and Lewis, 2010). The only practical 

difference between the approaches is that the result for all terms can be obtained at once 
through matrix manipulation in equation 20, whereas the Kalman smoother solves the 

problem sequentially (in two sweeps of the data)11. The term  in the context of the 

Kalman smoother is of course the uncertainty in the model prediction after one time step. 

The lower the value of , the more smooth the parameters will be, so,  is also thought 

of as a roughness parameter. 

Both Kalman filters (essentially a one-directional variant of the smoother) and this direct 
Lagrangian approach have been applied to regularisation of linear kernel models (Qin et 
al., 2006; Samain et al., 2008; Quaife and Lewis, 2010). As noted, the approaches are 
practically identical. The difficulty in using such approaches is in defining the roughness 
parameter. It is not obvious, for instance, that this should be the same for all model 
parameters. There are many approaches to estimating this term. Samain et al. (2008) 

provide an estimate of the model noise covariance (related to the  here) as a function 

of land cover class, using data from previous unconstrained parameter estimations. Quaife 
et al. (2010) assume that the noise statistics of the observations are well-characterised 
and derive a roughness parameter estimate that matches this. Other approaches include 
generalised cross validation. Whilst any such approach may be valid and provide a good 
estimate of the temporal model uncertainty, it is very difficult to arrive at a solution that will 
be applicable globally. Thus, whilst we believe that a smoothness constraint using 
equation 20 may be one of the best theoretical ways to proceed with the globAlbedo 
product, we prefer not to implement this in the current version. 

Instead, we apply a concept that we can more easily fit in with current experience of linear 
kernel parameter estimation. We can note that the optimal parameter estimate can be 
written (Quaife, 2009): 

 

                 22 

 

                                            
11 The approaches may also differ in the boundary conditions used (see Hansen et al., 2006 for a discussion 

of this).  
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where , i.e. we view the optimal estimation problem simply 

as a filtering problem: the optimal estimate of some element of  is simply the dot product 

of the appropriate line of  with the observations . This can of course be phrased as a 
convolution problem. Thinking about the problem in this way, it should be obvious to the 
reader how a Kalman ‘filter’ can be equivalent to this constrained optimisation problem: 
the job of the filter (or smoother) is effectively to provide the appropriate terms in  so that 
the summation of these weights with the observations provides the correct estimate of . 

In a Kalman filter, this is achieved sequentially, rather than involving manipulation of a 
large matrix as in 21.  

 

Figure 31-14. From Quaife (2009): Inverse differential operator for varying values of 

 

It is of interest then to consider what these filters look like. In the case of equation 21, it is 
quite a complex weighting term, being a function of temporal and angular sampling. We 
can gain insight into the filters by considering a single parameter version of this model, i.e. 

 with  as an identity matrix . Simplifying the observation variance-covariance 

matrix to 
 
and the constraint term to  gives: 
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Setting , we have . Quaife (2009) shows that for a large number 

of observations, the elements of  in the centre of the matrix (figure 17) correspond to a 
Laplace distribution12 (for a first order differential constraint). This function, also known as 
a  double exponential distribution, is the distribution of differences between two 
independent variates with identical exponential distributions and is written (as a 
continuous function): 

  

 

 

for time slot t. For the discrete case, the normalisation term will be slightly different and 
should make the sum of the filter terms unity. 

It is clear that the impact of regularisation of this form is very similar to applying a 

smoothing operator to , i.e. for an estimate of parameters in the centre of the time 

series, we can use a weighted contribution from observations before and after that point. 
For the simple function  the approaches are identical. Thus, we can approximate 

equation 20 with a modification of equation 17 to obtain the solution at a particular time t, 
: 

 

 

 

where: 

 

 

 

We now have a simple temporal weighting function that will closely mimic the impact of a 
fuller regularisation such as by a Kalman smoother with a zero-order process model. We 
still have the problem of determining  though. Even in the simple filtering case 

                                            
12 http://mathworld.wolfram.com/LaplaceDistribution.html 
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considered, it is clear that this should be a function of both the observation uncertainty and 
the (zero order process) model/constraint uncertainty and so should vary in both time and 
space. A pragmatic solution for estimating and appropriate  is to accept that the satellite 

albedo products that we are used to dealing with (and which will be compared with this 
product) often have a time window of around 16 days. This is equivalent to a weighting 
function of zero outside this period, and 1/N within it. We can relate our new weighting 

terms to this by, for example, setting  so that it has a value of 0.5 of the maximum 

value at  days, so . 

A similar approach is used by Geiger et al. (2008) in deriving kernel model estimates from 
Meteosat Second Generation (MSG) data. In that case, the weighting function is set to 
zero for  as their algorithm is intended for near realtime processing (i.e. cannot make 
use of ‘future’ observations). They use a characteristic time length of 5 days, rather than 
the 11.5 we propose here, but MSG have a great many more viewing opportunities per 
day than the sensors considered here.  

Another reason for settling on the Laplace distribution as a useful temporal weighting 
function is that being an exponential, it can readily be implemented sequentially. Geiger et 
al. (2008) demonstrated that a recursive algorithm could be developed with a similar 
weighting term (see below), although that used only one-sided weighting. Here, we 
develop a similar approach that allows for two-sided weighting. 

We can write the weighted summation as: 

 

 

 

where is the weighting normalisation term: 

 

 

 

The first term on the r.h.s. of the summation above can be written: 
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We have the (timewise) negative samples:  and the 

positive samples: . If we wish to perform the summation at 

t=t+1 then, we need simply multiply  by  and add on the new  value: 

 

 

Then for  we might do the opposite: multiply by  and subtract : 

 

 

 

Thus, so long as we store both the negative and positive summations at any point in time 
we wish to estimate the parameter values at, we can calculate the new summations for the 
next time step estimate directly from these, without recourse to performing new 
summations. This is a great efficiency saving, as otherwise, if a long time series were 
used in the regularisation, the data for these would have to be loaded and summed for 
each new estimation point. The potential downside of the approach is that it may be 
subject to rounding errors on the positive term in a computer implementation. This issue 
could be removed if the weighted summations were stored at each time point in time, at a 
cost of storing all summation terms. 

If new samples are to be added to the observation set as time progresses, this can be 
achieved by modifying the positive accumulator: 

 

 

 

There is probably little point in removing values from the negative accumulator, as their 
weights will rapidly reduce to zero. 
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31.6.4 Negative aspects of regularisation and how to deal with them 

Smoothing, or regularisation does not come without its own problems. As noted above, the 
smoothness parameter  needs to be estimated, but the methods noted above are all 
aimed at estimating a single ‘hyper parameter’ for a time series. In reality, the most 
appropriate value of such terms will vary in both time and space. The impact of an under-
estimate of a roughness parameter (i.e. over-estimate of smoothness) will be greatest at 
times of rapid change, such as snow fall or melt, harvesting, or wildfire. In these cases, 
using a generic term will always smooth over the sudden change. The impact of this is 
somewhat mitigated by the temporal resolution of the product being 8 days, but with a  of 
11.5 when the post-change signal is to be characterised, samples 11.5 days prior to this 
will still have a relative weighting of 0.5 (i.e quite a strong influence). This could be treated 
by reducing the value of  in these cases, but that would require change detection as part 
of the processing chain. 

More effective general methods involve further weighting the time series. In some cases a 
derivative of the parameters is used as a weighting term. Thus, where the derivative is 
high, the value of  is automatically reduced. 

The two main methods for achieving re-weighting to allow for sudden changes are: (i) 
changing the norm of the function to be optimised from L2 to L1; (ii) using a Huber Norm. A 
third method is proposed to fit in with the filtering/weighting approach being used here. 

31.6.4.1 Using an L1 Norm 

In using an L1 norm for the smoothness constraint term, equation 19 is changed to: 

 

 

 

In this case, the derivative of the second term on the r.h.s. becomes: 

 

 

 

so the solution is found from (in place of equation 20): 
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This problem is now however non-linear and cannot be solved simply with linear inversion 
methods. In practice, the implementation of the L1 norm by multiplying  by 

 can be achieved by iteration: first the problem is solved for an L2 Norm, 

then  is calculated and used to resolve for the parameters. The approach 

is attractive in that it requires no additional parameters beyond the norm (1 here). The 
impact of changing the norm in this way is that when changes in parameter values are 
rapid, this larger value is penalised much less with this norm than with the L2. Practically, 
this allows some sudden changes to be realised in the parameters (Hansen et al., 2006). 

31.6.4.2 Using a Huber Norm 

The Huber norm is a blended weighting function that uses the L2 norm for small residuals 
and the L1 norm for large values. It is widely used in robust regression analyses. This will 
have a very similar effect to changing to the L1 norm overall, but the properties and error 
propagation of the original problem are better maintained by keeping the L2 norm for small 
residuals. The norm is defined via the function: 

 

 

 

where  is the residual threshold value between the two norms. Again, this weighting 
makes the problem non-linear, so we lose some of the advantages of using linear 
methods throughout the rest of this approach. With the Huber Norm, experimentation 
would be required to determine an appropriate value of . 

31.6.4.3 A filter-based method 

In section 4.6.3 we propose using a weighting term on the observations in place of more 
complex regularisation. The efficient algorithm that results involves splitting samples into 
(timewise) negative and positive contributions. It is suggested that this approach mimics 
the main impacts of a smoother such as a Kalman smoother. Applying each set of 
contributions separately then (i.e. solving using only the negative contributions and using 
only the positive contributions) provides two independent estimates of the parameter at a 
given time. This essentially mimics using a Kalman filter in the forward and backward 
direction.  
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There are several ways this two-way processing could be used. Perhaps most obviously, 
the parameter estimates from the positive and negative processing could be directly 
compared, relative to the uncertainty in their estimation and step parameter changes 
identified. In such a case, processing could proceed from that point forward in time using 
only the positive values, and vice-versa for negative time steps. Alternatively, the 
discrepancy, relative to the uncertainty, could be used to weight the two contributions, so 
that if it is low, the final estimate of the parameters is an equal weighting of both positive 
and negative terms, and if it is high, positive terms are more strongly weighted for forward 
processing and negative terms more strongly weighted for processing backward in time. 

As yet, there has not been time to fully explore these approaches, so none of them are 
implemented in the current version of the algorithm. Instead, users of the product should 
be aware that the smoothing described above will occur in the presence of strong step 
changes, and that the impact can be gauged through knowledge of the weighting function 
used. 

31.6.5 Prior knowledge constraint 

Although regularisation or parameter weighting should improve our ability to obtain robust 
parameter (thence albedo) estimates from sparse angular samples over fixed window 
approaches, there will be occasions when there are only very few or even no samples 
available. In such cases, most algorithms adopt some ‘backup approach’ that is applied 
when these poor sampling conditions are identified. In the case of the MODIS 
BRDF/albedo product (Schaaf et al., 2002), a ‘magnitude inversion’ is attempted if 
between one and six observations are present13. This involves fitting an archetype BRDF 
‘shape’ (i.e. set of model parameters) to what samples are present, and scaling the term 
accordingly. This is based on the observation that BRDF shape tends to not change 
rapidly in time, although its magnitude may do. The archetype shapes are defined for 
different land covers and applied according to the land cover type identified for a particular 
pixel. 

This is an example of ‘prior knowledge’ being used to constrain the solution, but in the 
case of the MODIS product, there is a sharp transition between when it applied and when 
it is not. The transitions are defined by rules, and associate each parameter estimate with 
a particular QA value – see below for more details. 

Geiger et al. (2008) apply constraints based on (uncorrelated) prior information, in terms of 
the prior means and prior variance. Similar approaches are considered by Li et al. (2001), 
Hagolle et al. (2001) and Pokrovsky et al. (2003). 

In the approach of Geiger et al. (2008) the prior mean estimates come from a previous 
processing step, with the uncertainty inflated. This is stated to be mathematically 
equivalent to applying a decreasing weighting to the parameters over time, i.e. it is a form 
of regularisation, similar in many ways to a Kalman filter with a zero-order process model. 
Since the filter is applied only to historical samples, the parameter values remain 
unchanged in the absence of new samples, but the uncertainty in those estimates 
increases. As stated above, the main approach of Geiger et al. is for near real time 

                                            
13 There is also a condition on the weight of determination. 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 228 of 313 

processing, so this is an appropriate approach. An interesting output of the product 
described by Geiger et al. is the output of the time since last observation. In the context of 
this approach, this could be re-phrased as the minimum time (forward or backwards) to an 
observation. This use of ‘priors’ then is essentially the same as the temporal regularisation 
described above. 

A second aspect of the approach of Geiger et al. (described in appendix A of that paper) is 
that a ‘regularisation’ term is applied to equation 17, which can be phrased as: 

 

                24 

 

This is implemented to avoid numerical problems when the number of samples is very low. 

They set the term to and the diagonal of to . We can 

recognise this as a prior constraint on the parameters (hence the use here of subscript p). 
This is equivalent to adding a new cost term to equation 16 which is then minimised in 
combination with the other cost terms: 

 

                   25 

 

In the case of Geiger et al., a constant global prior term is used, with a large uncertainty, 
as a very weak constraint on the solution. They apply no prior knowledge to the isotropic 
parameter. In practice, this will be similar to using the archetype kernel values of the 
MODIS approach (letting one parameter float free, even in the case of a single 
observation). It has the advantage however that an uncertainty value is returned, even in 
the case of a single observation. 

If better prior estimates of the model parameters were available, they could be used to 
constrain the solution where the information content of the data (not just number of 
samples) is low. This is readily achieved through the use of appropriate parameters in 
equations 24 and 25. This idea is further explored in the following section. 

32 Prior Estimation 

32.1 The requirement for priors 

It is very likely that the information content of the sensors proposed for use in GlobAlbedo 
have significantly less information content (in their ability to constrain estimates of albedo) 
that the data used in some other products, notably the MODIS BRDF/albedo product. This 
is mainly because of spectral sampling issues (particularly for MERIS), angular sampling 
(particularly MERIS and (A)ATSR/ATSR-2), and viewing opportunities (comparing those of 
VEGETATION with 2 MODIS sensors). The best scientific dataset then would most likely 
be obtained from a combination of data from all of these sensors, including MODIS, 
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provided there were no significant calibration biases between the instruments. This is 
however not feasible within this project, and there is a further desire to generate a product 
that is not dependent on non-European data (e.g. to safeguard future production). 
Therefore non-European data will only be used here in the generation of one-off ancillary 
datasets for this product. In particular, MODIS data will be used to provide a prior estimate 

of model parameters  and associated uncertainty information . 

There are many significant advantages to using a ‘prior’ in the processing. In particular, as 
noted in the previous section, it can provide a form of regularisation which allows a 
solution to be calculated even when sampling is weak. This is important as it obviates the 
need for a ‘backup algorithm’: there is instead a smooth, statistically-based blending of 
information from the prior estimate and the new observations, the quality of which can be 
assessed through a consistent uncertainty measure.  

In the case of a small number of observations (when the estimate is strongly reliant on the 
prior estimate) the uncertainty should be relatively high, i.e. we should only use an 
external prior as this as a relatively weak constraint. A strong prior constraint would mean 
that the resulting product would be very dependent on the quality of the prior as a good 
estimate of model parameters, and therefore sensitive to any errors or biases they 
contain. It would also make it sensitive to the particular way in which the MODIS product is 
calculated (e.g. 16 day moving window).  

That said, there are now more than 10 years of global MODIS BRDF/albedo data, at 500 
m spatial resolution, every 8 days. There is clearly a lot to learn from these data, and one 
way to do that is to develop a spatially and temporally complete prior parameter estimate 
from them.  

Moody et al. (2008) analysed 5 years of the MODIS BRDF/albedo product (collection 4) to 
develop a snow-free aggregate albedo climatology. Part of their assessment is an attempt 
to gauge the accuracy of a phenological interpolation method being developed, but even 
within that context, it is clear from their results that the inter-annual variability of bi-
hemispherical reflectance (‘white sky albedo’ – a measure closely related to albedo) is 
surprisingly low. This is illustrated in figures 8 and 9 in their paper (figures 18 and 19 
here). Their results also suggest that in the near infrared, the departure of (‘white sky’) 
albedo from the climatology is less than 0.05 for the vast majority of circumstances. 
Clearly these results must be put into context particularly as they apply only to a single 
five-year period (2000-2004) and we cannot claim that inter-annual variability of albedo is 
unimportant, but it does suggest that, in developing any algorithm to characterise albedo, 
a good first estimate of snow-free abledo can be obtained from a climatology. 
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Figure 32-1. Zonal average MODIS albedo climatology and data for 2002 (from 
Moody et al., 2008) 
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Figure 32-2. MODIS albedo climatology and data for 2002 (from Moody et al., 2008) 

Given that the impact of snow on albedo is so great, we choose to develop two sets of 
prior information. These are: (i) snow free (i.e. processing of all MODIS data which is not 
flagged as ‘snow’); (ii) snow (i.e. processing of all MODIS data which is flagged as ‘snow’). 
A third, that we might term ‘with snow’ (processing of all data, whether snow free or not) 
might be worthwhile developing, as discussed below, although it will not be processed in 
this implementation of the globAlbedo product.  

The use of these different priors will be expanded on in the algorithm description, but it is 
essentially so that input data that is given a high confidence of being snow-affected makes 
use of the ‘snow’ prior in its processing (and only makes use of ‘snow’ pixels in estimating 
the model parameters) and the ‘no snow’ prior is used for processing data that are 
identified as not being snow-affected. In practice, snow detection relies on thresholds in 
algorithms, and the measure would be better considered as a ‘snow confidence’ measure. 
If this were well understood and could be guaranteed to be a probability measure, this 
might be translated into a weighting term for the application of the two priors. However, 
such a characterisation is beyond the scope of this study. One approach then might be to 
produce three ‘versions’ of the globAlbedo product: one for snow-free conditions only (fed 
with high confidence snow free data); one for snow only, and one that is processed 
whether there is snow or not (but which flags the product as mostly coming from snow or 
no snow pixels). This latter product is similar to other albedo datasets produced, and 
should in many ways be the primary dataset we develop. However, if only a ‘snow’ and ‘no 
snow’ set of products are developed, and full uncertainty information is associated with 
both, then the ‘with snow’ product can be developed by combining these two datasets. We 
will therefore concentrate on the development of only the ‘snow free’ and ‘snow’ products. 
Each of these will carry information on the time to the closest ‘snow free’ and ‘snow’ 
sample, respectively, to allow a ‘snow’ flag to be carried through to a combined product. 

It is worth noting at this point that there are questions about the appropriateness of the 
kernel models to be used here for modelling the BRF of snow. In particular, snow often 
has a large forward scattering peak which cannot be mimicked by these kernels. Stroeve 
et al. (2005) compared the (collection 4) MODIS albedo product with in situ measurements 
over the Greenland ice sheet. They conclude the that average root mean squared error 
between ground measurements and MODIS estimates was 0.04 (using only high quality 
MODIS estimates) which is only slightly larger than the uncertainty of the in situ 
measurements. For high snow albedo (>0.7) the agreement was good, but for lower 
values there was an apparent bias of around 0.05. Figure 20 represents a summary of 
these results, although interestingly, it compares ground measurements to both black sky 
and white sky albedo estimates. The fact that these (squares and triangles in the figure) 
are so close suggests that the weights of the non-isotropic kernel parameters are rather 
low. It may be then that the kernels are effectively giving an isotropic equivalent 
(effectively a mean of all observations in the case of the MODIS product) and that the 
directionality is largely ignored. A point emphasised by Stroeve et al. is that around 50% of 
the satellite observations obtained during the sunlit season at the latitude of Greenland are 
obtained at solar zenith angles beyond 70 degrees. At these angles, both treatment of 
atmospheric effects and surface modelling become rather difficult and uncertainties in both 
are likely to be high. There have been several other attempts to estimate snow albedo 
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from satellite data (e.g. Klein and Stroeve, 2002; Stroeve and Nolin, 2002; Liang et al., 
2005) but none of these appear to perform significantly better than the MODIS kernel 
approach. 

Other than issues with the kernels used to model snow, there is a case to be made that 
narrow-to-broadband coefficients especially tailored to snow will reduce errors in snow 
albedo, due to the completely different spectral behaviour of snow compared to most other 
(e.g. soil and vegetation) land surface types. 

 

 

Figure 32-3. Comparison between clear-sky MODIS 16-day albedo and 16-day in situ 
albedo for both the Black sky albedo and white sky albedo, combined for all 

Greenland stations (from Stroeve et al., 2005).  

 

32.2 Generations and use of prior 

The key to the development of a widely useful albedo dataset is to make the best use of 
available information and to carefully treat uncertainties at all stages of processing. This 
latter point is best dealt with in a Bayesian/optimal estimation framework that we have 
developed above. This same framework should be used for any ‘back-up’ algorithms or 
gap filling.  

If we suppose the existence of a background ‘filler’ albedo dataset (which could be derived 
for instance as a 16 day product of the mean albedo for any location over a long time 
period), defined by an expectation of the model parameters , and we attach an 

uncertainty to this background albedo , then we can obtain the posterior mean 

(estimated)  from equation 24. 

If we only want the background (‘prior’) estimate to act as a gap-filling term, the 

uncertainty in the background estimate expressed through the matrix  needs to be 

sufficiently high that high-quality observations and angular sampling are essentially 
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unaffected by  but when the information content of the observations is low (or there are 

no samples), the solution defaults to  with associated uncertainty through . 

The provision of a reasonable estimate of the background  is important for the utility of 

the product, and this is probably best achieved from existing datasets such as the MODIS 
albedo product (unless very weak priors are to be used, as in Geiger et al. 2008). Since 
the desire here is for a product independent of non-European sensors, the prior could be 
replaced once processing is completed by a new version of  from the full time series of 

the GlobAlbedo product. Indeed, if it were possible to store all  and  terms in the 
algorithm described in section 4.6.3, the parameter estimate could be rapidly re-run with 
different versions of the prior estimate14.  

32.2.1 Input Data 

The MODIS Collection V005 BRDF-Albedo model parameters product15 (Lucht et al.,2000; 
Schaaf et al., 2002, 2008) is used to develop the prior parameter estimates. Specifically, 
MDC43A116 (BRDF-Albedo Model Parameters 16-Day L3 Global 500m) and MCD43A217 
(BRDF-Albedo Quality 16-Day L3 Global 500m) are used. These data are freely available 
for download, although because the whole archive was required, special delivery of the 
product was arranged with NASA. 

The product uses multiple observations from gridded atmospherically-corrected surface 
reflectance BRF over a 16-day time period, producing a product every 8 days. As well a 
generating BRDF/albedo products for the 7 MODIS land bands, results are also generated 
for the following broad wavebands: visible (0.3-0.7μm) - VIS , near-IR (0.7-5.0 μm) – NIR 
and total shortwave (0.7-5.0 μm) – SW. 

The algorithm uses a reciprocal version of the semiempirical RossThick-LiSparse 
Reciprocal (RTLSR) kernel-driven BRF model (Lucht et al., 1999; Roujean et al.,1992; 
Wanner et al., 1995, 1997), the theory of which is presented above. 

Gridded surface reflectance data are flagged as clear or contaminated (e.g. cloud). Clear 
observations are accumulated over a 16 day window, applying equation 17 to parameter 
estimation if the weight of determination is sufficiently good and there are sufficient (>=7) 

                                            
14 This is not considered practical at this stage however. 

15 http://modis-land.gsfc.nasa.gov/brdf.htm 

16 

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/brdf_albedo_model_parameters/16_day_l3_gl

obal_500m/mcd43a1 

 

17 

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/brdf_albedo_quality/16_day_l3_global_500m

/mcd43a2 
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observations available. Only model fits with RMSE <0.1 and weights of determination <2.5 
are considered candidates for model inversion. A filtering step is applied to remove 
outliers, based on a weighting of the residuals. If the majority of observations are flagged 
as ‘snow free’ the resulting parameters are flagged ‘snow free’, vice-versa if the majority 
are flagged ‘snow’. If insufficient observations are available for a ‘full’ inversion, the results 
are given a poorer QA flag (see below). 

All of the existing archive of the MODIS products described were used in processing, but 
for testing and demonstration, we have selected four example tiles with different 
environmental conditions. These range from almost permanent snow conditions in Siberia, 
tile h22v022 and seasonal snow in central Europe, tile h18v04 to tropical conditions in tile 
h19v08. Tile h25v06 (N. India, Himalayas) has very strong topographic impacts and 
significant snow cover. Figure 21 shows the locations of these ‘test’ tiles. 

 

 

 

 

Figure 32-4.  MODIS tiles, in blue: h18v04, green: h19v08, red: h22v02, black: h25v06 

32.3 Estimating mean and uncertainty in priors: theory 

Any optimal merging of data requires estimates of the uncertainties associated with the 
various data sources. Often this information is not directly available. The particular dataset 
of interest here is the MODIS BDRF/Albedo product (MCD43). Albedo is described for 
some waveband via spatial datasets of three model parameters ,  and , 

available from the NASA product MCD43A1 at 500m spatial resolution at 8-day intervals 
from early 2000 to the present (i.e. around 10 years of data).  

The uncertainty in albedo is a function of the angular sampling achieved by the MODIS 
instruments and uncertainties in the input BRF data (due to errors in the compensation of 
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atmospheric effects, footprint/gridding issues etc.). Whilst the former can be described by 
standard statistical methods and described as a function of the weight of determination 
(WoD) (Lucht and Lewis, 2000), the latter is not routinely characterised for MODIS data. 
Further, if insufficient samples (<=7) are deemed available over the (16 day) period of 
observation, the linear BRF model cannot be inverted without further constraint and a 
‘backup algorithm’ is brought to bear on the problem.  In this case, a constrained model is 
used in the inversion (the so-called ‘magnitude inversion). For these various reasons there 
is no routine assessment of the uncertainty associated with the BRF model parameters. 
Instead, to give the user a guide to reliability of the data, the product MCD43A2 provides 
Quality Assurance (QA) information associated with each pixel and time period of 
inversion. This is described in detail in WWW1. For each of the seven MODIS wavebands, 
QA is categorised into five levels (Error! Reference source not found..  

 

Code Meaning 

0 best quality, full inversion (WoDs, RMSE majority good) 

1 good quality, full inversion 

2 Magnitude inversion (numobs >=7) 

3 Magnitude inversion (numobs >=3&<7) 

4 Fill value 

Table 32-1. MODIS QA descriptors (source WWW1) 

Thus, other than the ‘fill value’ (which we can interpret as ‘no data’) there are four 
categories of QA information that would be expected to have decreasing reliability with 
increasing code values.  

In this analysis, we require an estimate of the mean and uncertainty in the BRF model 
parameters (for three broad wavebands) as a background estimate for GlobAlbedo 
processing. The uncertainty should be a relatively conservative estimate for this purpose 
(i.e. we should be minded to over-estimate uncertainty rather than under-estimate it, to 
avoid under-weighting new observations in the GlobAlbedo processing chain). The 
problem can be split into two components: (i) estimating the uncertainty associated with 
the best quality inversions (QA code 0); (ii) characterising the uncertainty of data with QA 
codes 1 to 3 relative to data with QA code 1. As noted above, we have access to around 
10 years of data to achieve this. To calculate a mean from all observations (QA codes 0 to 
3), we need access to the relative uncertainty of QA codes 1 to 3 to data with QA 0. For 
ease of implementation, we require a simple descriptor of relative uncertainty.  

We assume that the mean and uncertainty for a given pixel for category QA code 0 can be 
estimated from samples over the ten years of observations, with a minimum of four 

samples and denote the mean  and variance  for some location  for 

parameter . Of course this includes not only the uncertainty in the parameter but also 

any real variation in the parameter over the time period. It is therefore liable to be an over-
estimate of uncertainty.  
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We then estimate  for other QA codes from its mean value for pixel  over the ten-year 

time period, where a minimum of three samples exists and call this  for QA codes 

. We initially process only snow-free observations, as these are likely to give a 

more reliable estimate of uncertainty than those including some snow.  

We assume  represents  at  and characterise the departure from this for 

, relative to : 

 

 

where  is the number of samples over  (with 4 or more samples of QA 0 and 3 or 

more samples of QA c). 

We then define a set of weighting terms W10, W20 and W30 for each category of QA relative 
to QA0 where: 

 

 

 

These weights can then be used in calculating estimates of the mean value for each 

parameter for each pixel , using data from all QA categories: 

 

 

 

defining . The summation over  is over all samples for pixel  that fall into 

category QAc. The normalisation term  is: 

 

 

 

32.4 Estimating mean and uncertainty in priors: practice 

The first problem here is to take a set of model parameters of varying quality (described 
simply by Quality Assurance (QA) flags) and provide an updated estimate of the 
parameters at a particular place and time, along with estimates of parameter uncertainties 
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and covariance. If we consider a parameter  calculated in MCD43, an improved 

estimate of this parameter,  can be calculated from some set of ‘observations’ of  by: 

 

                    26 

 

where  is the ith sample (of a set of n) of  and  is the mean squared error 

associated with that observation. We can define a relative weight  which is 

the error associated with the highest quality observation (QA1) relative to that with the 
observation. We assume this relative weighting to be the same for all parameters. Then: 

 

                    27 

 

This means that we do not need to know the absolute uncertainty associated with an 
observation, just its relative uncertainty. This is potentially very powerful as we have only 
QA information to assign uncertainties. The problem is reduced to one of defining the 
weighting terms associated with each QA state, , so that:  

 

                   28 

 

In fact, the datasets we are analysing here are censored. This is because the model 
parameters are constrained to be non-negative. In this case, the expected value cannot be 
described simply as the mean. Since the censoring is likely to apply to only a small 
proportion of the parameter distribution, a median is an improved estimate of the mean of 
the unconstrained parameter distribution. Thus, we should probably estimate  as a 

weighted median, although that is not done here for ease of processing. 

The value of  will be unity for QA1. It is not straightforward to define the other  

terms however, particularly as the QA values cover quite wide ranges of circumstances. 
Since increasing QA state indicates a likely decrease in quality, we can suggest that  

should monotonically decrease with increasing N. We can therefore proceed by assigning 
some arbitrary values that fit in this pattern and examine the impact of these choices. A 

reasonable initial estimate of  would be , 0.618 being the Golden 

Mean, giving: , , , . 
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If we are interested in calculating an albedo climatology (i.e. a mean field), we could use 
equation 28 to estimate the weighted mean parameter values for each pixel at time period 
d over all samples that exist for the decade of observations. This is potentially very useful 
information (see Moody et al. 2007, 2008 and the discussion above). 

We can further provide an estimate of the uncertainty in each model parameter. This is 
best phrased in matrix form, representing the uncertainty due to variances in the model 
parameters and covariances between them. Since the primary aim of this gap-filled 
product development is to provide a prior estimate of model parameters, it would be 
advantageous if the uncertainty estimate were conservative in nature (i.e. liable to be an 
over-estimate of uncertainty, rather than an under-estimate). We can therefore first 
consider the variance/covariance of the parameters over the sampling period: 

 

 

 

where  is the covariance between parameters  and  (or variance if considered for 

the same parameter). For small sample sizes (as is the case here) this should be 
corrected for bias: 

 

 

 

These terms will include both parameter uncertainty and any inter-annual variation, and so 
provide upper bound estimates, as required. The uncertainty associated with the estimate 

of the expected value and their co-variation,  (the standard error) is: 

 

 

 

In examining the estimate of the priors, we experimented (below) with a temporal 
weighting function. The concept is based on the idea that an optimal estimate of the prior 
for a given year can be given by a weighted average over time. The weighting function 
applied was p2

|y-y0| where p2 is a smoothness parameter, y is the calendar year of any 
particular sample, and y0 is the ‘focus’ year. Setting p2=1 gives a standard climatology, but 
decreasing values of p2 give a shaper focussed weighting function (meaning that more of 
the information for the mean estimate comes from the focus year).  
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It is not immediately obvious whether a climatology product (p2=1) should be used as a 
prior or whether a more focussed estimate is better18. Theoretically, the latter should 
provide a better constraint on the inversion, but a danger is that too much information from 
the MODIS estimates will be transferred to the GlobAlbedo product which is supposed to 
be generated from independent measurements. Since we really only want to use the prior 
as a weak constraint, a climatology might be a better approach. This has the additional 
advantage of needing only a single estimate, rather than products for every year. An 
important aspect of the prior processing is to give estimates of the uncertainty in the 
calculations of expected values of the model parameters (as a full variance / covariance 
matrix). Whilst this can theoretically be estimated from the sample data, the number of 
samples is likely quite small (<10) so we must consider the reliability of any such estimate. 
If we downweight temporally-distant samples (i.e. use p2=1) the reliability of the 
uncertainty estimates may also be impacted. 

It is necessary to assess the impact of a global smoothing (p2) term, which might be 
applied independent of seasonality or temporal constraints. This is done in the following 
three subsections (5.4.1-5.4.3) by analysing, as a function of p2: (1) the variation in the 
mean; (2) the variation of the standard error estimates; (3) the variation of the correlation 
coefficients. Results from smoothness parameter values from 0.5 to 0.9 (where 0.5 is 
strongly focussed on the target year) are compared with results from smoothness 1.0 
(climatology). The analyses seek to determine whether there is any significant difference 
between estimates of these terms as a function of the smoothness parameter, and also 
whether the derived terms are consistent with what would be expected and what is 
required for a weak prior. 

In section 5.4.4 we seek to test the reliability of the estimated model parameters by a 
cross validation exercise.  

32.4.1 Analysis of estimated mean in priors 

An analysis of the impact of the smoothness parameters in the weighted mean from f0, f1 
and f2 parameters for prior generation was performed for the test tiles. Scatterplots are 
shown below comparing different broadband albedo weighted mean parameters 
generated using smoothing parameter 1.0, always in the X axis and smoothing parameter 
0.5 in Y axis. The day of year (DOY) refers to the starting 16-day period. The year of 
analysis is 2005. Tables describing the statistics of the relationships are also presented. 

 

 

 

 

 

                                            
18 A requirement from ESA for this product is that, if a prior is to be used, it should only be a climatology 

(so that it is not dependent on (new) non-European data), but the impact of a climatology prior as opposed to 

a focussed prior is still a worthwhile subject of investigation, and so conducted here. 
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Figure 32-5. On the left, mean f0 h18v04 DoY 001 1.0 vs 0.5, on the right, mean f0 
h18v04 DoY 145 1.0 vs 0.5 

 

 

Smoothness 
parameter 

R2 Slope Intercept 

DOY 001 145 001 145 001 145 

0.5 0.970 0.976 0.992 0.992 0.000 0.001 

0.6 0.981 0.985 0.993 0.993 0.000 0.001 

0.7 0.989 0.991 0.995 0.994 0.000 0.001 

0.8 0.995 0.996 0.997 0.996 0.000 0.000 

0.9 0.999 0.999 0.999 0.998 0.000 0.000 

Table 32-2. Statistics of model parameters (2005) predicted using different 
smoothness parameters, tile h18v04 DOY 001 and 145. 

  



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 242 of 313 

  

  

Figure 32-6. On the left, mean f0 h19v08 DoY 001 1.0 vs 0.5, on the right, mean f0 
h19v08 DOY 145 1.0 vs 0.5 

 

 

Smoothness 
parameter 

R2 Slope Intercept 

DOY 001 145 001 145 001 145 

0.5 0.968 0.943 1.007 0.986 -0.001 0.001 

0.6 0.980 0.965 1.004 0.989 -0.001 0.001 

0.7 0.989 0.981 1.001 0.991 -0.001 0.001 

0.8 0.995 0.992 1.001 0.994 0.000 0.000 

0.9 0.999 0.998 1.000 0.997 0.000 0.000 

Table 32-3. Statistics of f0 mean, with different smoothness parameters, tile h19v08 
DoY 001 and 145 
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For tile h22v02, snow conditions were predominant in the scene on DOY 001, leaving only 
a few pixels for data analysis, so a scatterplot was only calculated for DOY 145. 

 

 

 

Figure 32-7. Mean f0 h22v02 DOY 145 1.0 vs 0.5 

 

 

Smoothness 
parameter 

R2 Slope Intercept 

0.5 0.921 1.040 -0.001 

0.6 0.951 1.032 -0.001 

0.7 0.974 1.024 -0.000 

0.8 0.989 1.016 -0.000 

0.9 0.998 1.008 -0.000 

Table 32-4. Statistics of f0 mean, with different smoothness parameters, tile h22v02 
DoY 145 
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Figure 32-8. On the left, mean f0 h25v06 DOY 001 1.0 vs 0.5, on the right, mean f0 
h25v06 DOY 145 1.0 vs 0.5 

Smoothness 
parameter 

R2 Slope Intercept 

DOY 001 145 001 145 001 145 

0.5 0.990 0.995 1.004 0.998 -0.001 0.000 

0.6 0.993 0.997 1.004 0.998 -0.001 0.000 

0.7 0.996 0.998 1.003 0.999 -0.001 0.000 

0.8 0.988 0.999 1.002 0.999 -0.000 0.000 

0.9 1.000 1.000 1.001 1.000 -0.000 0.000 

Table 32-5. Statistics of f0 mean, with different smoothness parameters, tile h25v06 
DoY 001 and 145 

For all test tiles, the relationship between predictions of model parameters in the year 
2005 using a climatology and predictions calculated from a weighted average, focussed 
on the year 2005 is extremely strong. There is negligible apparent bias in the estimates 
over these tiles. R2 was always very high; the smallest value being 0.921 in tile h22v02 
DOY 145, comparing smoothness parameters 0.5 and 1.0. From this, we conclude that 
changing the smoothness parameter has a very small impact overall on the weighted 
mean for all model parameters. 

32.4.2 Analysis of standard deviations in estimated priors 

In order to investigate the impact of different smoothness parameters in the standard error 
(SE) of the priors, a comparison of different prior SE generated with different smoothness 
parameters, ranging 0.5 to 1.0 was performed, the following scatterplots show in the X 
axis the SE from the VIS broadband for parameters, f0, f1 and f2 calculated with 
smoothness parameter 1.0, in the Y axis the SE using 0.5 smoothness parameter. The 
day of year (DOY) again refers to the starting 16-day period. The year of analysis is 2005. 
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A B C 

Figure 32-9. Scatterplots of standard error from smoothness parameter 1.0 in X axis 
and 0.5 in Y axis, A - VIS parameter f0, B - VIS parameter f1, C - VIS parameter f2, Tile 

h18v04 DoY 001 

 

 

 

SE R2 Slope Intercept 

 f0 f1 f2 f0 f1 f2 f0 f1 f2 

0.5 0.882 0.889 0.889 1.965 1.890 1.891 0.000 0.000 0.000 

0.6 0.931 0.935 0.936 1.685 1.635 1.639 0.000 0.000 0.000 

0.7 0.964 0.966 0.967 1.462 1.430 1.436 0.000 0.000 0.000 

0.8 0.985 0.986 0.987 1.280 1.261 1.266 0.000 0.000 0.000 

0.9 0.997 0.997 0.997 1.128 1.120 1.122 0.000 0.000 0.000 

Table 32-6. SE statistics from parameters f0 , f1 and f2 tile h18v04 DOY 001 
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A B C 

Figure 32-10. SE scatterplots from smoothness parameter 1.0 in X axis and 0.5 in Y 
axis, A - VIS parameter f0, B - VIS parameter f1, C - VIS parameter f2, Tile h18v04 DOY 

145 

 

 

SE R2 Slope Intercept 

 f0 f1 f2 f0 f1 f2 f0 f1 f2 

0.5 0.898 0.893 0.849 2.119 2.088 2.206 -0.001 -0.001 -0.001 

0.6 0.939 0.937 0.915 1.822 1.797 1.832 -0.001 -0.001 0.000 

0.7 0.968 0.967 0.958 1.564 1.548 1.551 0.000 0.000 0.000 

0.8 0.987 0.987 0.983 1.342 1.333 1.330 0.000 0.000 0.000 

0.9 0.997 0.997 0.996 1.155 1.152 1.149 0.000 0.000 0.000 

Table 32-7. SE statistics from parameters f0 , f1 and f2 tile h18v04 DOY 145 

 

Figures 26 and 27 illustrate typical plots of the SE estimated for different smoothness 
parameters. As would be expected, the R2 of the SE relationships increased with 
decreasing smoothness (increasing roughness) for all tiles examined, i.e. the relationship 
was weaker. If we assume the climatology-based uncertainty estimates to be the most 
reliable (being less sensitive to local variations), this might suggest that the SE estimates 
from the more focussed versions of processing are somewhat more unreliable. This is 
difficult to assess however, as the SE measure includes real variation as well as noise. In 
the climatology, the real variation is averaged out, but in the focussed versions it will have 
a stronger influence.  

Of more significant note is that the bias for all relationships is negligible and that the slope 
apparently varies consistently and is close (though not identical) for all tiles. This scaling 
factor is approximately 2 for a smoothing factor of 0.5. This implies that the estimate of 
variance in the model parameters can readily be calculated from a climatology, since we 
can approximately re-estimate the terms for more focussed smoothing by a relative 
scaling term. The quality of this prediction decreases with increasing scale factor 
(decreasing smoothness). 
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32.4.3 Analysis of model parameters correlation in estimated priors 

To further assess the likely utility of the second order statistics estimated above, we 
calculated the correlation coefficients between every broadband (VIS, NIR and SW) every 
albedo model parameter (f0, f1 and f2), and compared these estimates for varying 
smoothness parameters. If the correlation coefficients were to show any unexpected 
behaviour or vary significantly as a function of the smoothness parameter, then we would 
need to question the reliability of these estimates. 

For the 3 bands, with 3 parameters, we obtain N(N-1)/2 (off-diagonal) correlation terms. 
i.e. 36 different correlation coefficients per degree of smoothness. Below, we present: (1) 
example images of the f0 model parameters in the 3 bands, as a false colour composite 
(FCC); (2) example images of correlation coefficients between parameters f0 between the 
VIS and NIR bands; (3) example scatterplots of correlation coefficients calculated with 
different smoothness parameters going from 0.5, in the Y axis to 1.0, in the X axis. In the 
image examples, high positive values of correlation coefficients are coloured green and 
high negative values red. The bounds of these colour labels is illustrated in an 
accompanying scatterplot in each case. 

Examination of the scatterplots shows that the correlation information is mostly very 
similar for different values of the smoothness parameter: where high correlation is 
indicated from one smoothness parameter, it tends to be also indicated at other values of 
smoothness. We can conclude that this information then is consistent as a function of the 
smoothness parameter. 

However, examination of the spatial plots of correlation coefficient shows them to be 
highly variable spatially, and not in any clear way related to surface features such as land 
cover variations. Further (not shown here), they are not very consistent as a function of 
time, with large swings between highly positive correlations and high negative values. 
Indeed, the vast majority of pixels apparently have a very high magnitude of correlation 
(either positive of negative). This could be an expression of true correlation between the 
parameters, but the fact that it is very high, and that it is spatially noisy and temporally 
unstable lead us to conclude that it is more likely just a poor estimate. We therefore 
conclude that correlation information calculated in the estimation of priors is likely not 
reliable and will therefore not make use of it in determining the prior distributions.  
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Figure 32-11. Tile h18v04: A) FCC mean f0 (NIR,SW,VIS: RGB), DOY 001; B) in red 
strong negative correlation, in green strong positive correlation of VIS parameter f0 
and NIR parameter f0 from smoothness parameter 0.5 and 1.0; C) correlation 
coefficients of VIS parameter f0 in the x-axis and NIR parameter f0 in the y-axis from 
smoothness parameter 0.5 and 1.0 

 

A  B  C  D  

E  F  G  H  

Figure 32-12. Tile h08v04 DoY 001, correlation coefficients for smoothing 
parameters 0.5 (y axis) and 1.0 (x axis) of VIS broadband albedo parameter f0 with A: 
VIS f1, B: VIS f2, C: NIR f0, D: NIR f1, E: NIR f2, F: SW f0, G: SW f1 and, SW f2 
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Figure 32-13. Tile h25v06: A) FCC mean f0 (NIR,SW,VIS: RGB), DOY 001; B) in red 
strong negative correlation, in green strong positive correlation of VIS parameter f0 
and NIR parameter f0 from smoothness parameter 0.5 and 1.0; C) correlation 
coefficients of VIS parameter f0 in the x-axis and NIR parameter f0 in the y-axis from 
smoothness parameter 0.5 and 1.0 

A  B  C  D  

E  F  G  H  

Figure 32-14. Tile h08v04 doy 001, correlation coefficients for smoothing 
parameters 0.5 (y axis) and 1.0 (x axis) of VIS broadband albedo parameter f0 with A: 
VIS f1, B: VIS f2, C: NIR f0, D: NIR f1, E: NIR f2, F: SW f0, G: SW f1 and, SW f2 
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32.4.4 Cross-validation exercise 

The purpose of this experiment is to assess the reliability (robustness) of the ‘prior’ 
estimate of model parameters. The sub-sections above have examined its stability and 
general behaviour as a function of the smoothness parameter. 

For this cross-validation exercise we extract only QA0 values of the model parameters for 
the year 2005 as a reference dataset. We then attempt to estimate this value (where at 
least three samples are available) from datasets excluding the year 2005, using the 
methods described above (this is the ‘prior’). We then have two independent estimates of 
the model parameters to compare. If they are close, we can conclude that the ‘prior’ (the 
test dataset) estimate of the model parameters is robust (i.e. it can predict the 
independently estimate of the parameters). There is no uncertainty information available 
for the reference (2005) dataset, but the ‘prior’ estimate includes a full uncertainty matrix. 
Given concerns regarding the reliability of estimated correlation information expressed 
above, we estimate the goodness of fit between the reference and test datasets both 
making use of the full uncertainty information and using only the leading diagonal of that 
matrix (i.e. ignoring correlation coefficients). 

The goodness of fit (agreement) between the reference and test dataset is defined 
through a term . This is a measure of the squared difference between , which is a 
vector containing the weighted means using a non-2005 estimate of 2005 (test data) and 

 which is a vector with the weighted means obtained from the 2005 dataset (reference) 
from ‘high quality retrievals’, weighted by the apparent uncertainty in . Epsilon was 
calculated for every smoothness parameter and every 16-day rolling composite time 
period from 2005. 

 

 

 

To examine , we assess various characteristics of its spatial distribution (for each tile) as 
a function of DOY over 2005. Examples are shown in sub-plots A and B of figures 32-35 
below. Specifically, they show the mode (peak of histogram) (A) and median (B) value of  
over each tile, for varying values of the smoothness parameter. These statistics are used 
as the distribution of  is non-Normal. Sub-plots C show the relationship between the 
median  for smoothness values 0.5 to 0.9 compared to that of the climatology 
(smoothness parameter 1.0). Figure 32 shows results for tile h18v04 with full correlation 
information and figure 33 that with only the parameter variance information used. Figures 
34 and 35 show similar information for tile h25v06. Each set of figures is accompanied by 
a table giving the mean value of  over all time and space samples (the mean over time of 
the mean over space) and the mean of the median values (the mean over time of the 
median over space). These are measures characteristic of  as a whole for a particular 
tile, as a function of smoothness parameter. 
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C 

 

Figure 32-15. Temporal profile of epsilon A: peak of histogram, B: median and C: 
scatter plot of epsilon median for different smoothness parameters; Tile h18v04, 
with correlation information 

 

Smoothness parameter Mean of modes Mean of medians 

0.5 3.236 5.476 

0.6 3.394 5.723 

0.7 3.684 6.060 

0.8 4.130 6.471 

0.9 4.448 6.954 

1.0 4.942 7.500 

Table 32-8. Statistics of epsilon for tile h18v04 using correlation information. 
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Figure 32-16. Temporal profile of epsilon A: peak of histogram, B: median and C: 
scatterplot of epsilon median from smoothness parameter 1.0 and 0.5 to 0.9; Tile 
h18v04, without correlation information 

 

Smoothness parameter Mean of modes Mean of medians 

0.5 1.820 2.618 

0.6 2.081 2.982 

0.7 2.399 3.388 

0.8 2.739 3.839 

0.9 3.109 4.349 

1.0 3.537 4.917 

Table 32-9. Statistics of epsilon for tile h18v04 not using correlation information. 
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Figure 32-17. Temporal profile of epsilon A: peak of histogram, B: median and C: 
scatterplot of epsilon median from smoothness parameter 1.0 and 0.5 to 0.9; Tile 
h25v06, epsilon statistics with correlation information 

 

Smoothness parameter Mean of modes Mean of medians 

0.5 2.920 5.144 

0.6 3.139 5.350 

0.7 3.398 5.665 

0.8 3.768 6.075 

0.9 3.957 6.541 

1.0 4.469 7.105 

Table 32-10. Statistics of epsilon for tile h25v06 using correlation information. 
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Figure 32-18. Temporal profile of epsilon A: peak of histogram, B: median and C: 
scatter plot of epsilon median from smoothness parameter 1.0 and 0.5 to 0.9; Tile 
h25v06, epsilon statistics without correlation information 

 

Smoothness parameter Mean of modes Mean of medians 

0.5 1.923 2.749 

0.6 2.168 3.098 

0.7 2.484 3.489 

0.8 2.782 3.932 

0.9 3.178 4.422 

1.0 3.523 4.990 

Table 32-11. Statistics of epsilon for tile h25v06 not using correlation information. 
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The overall trends in the behaviour of  are consistent between the different tiles. The 
relationship between mode and mean is consistently median = 1.21 mode + 1.59 when the 
correlations information is used and median = 1.36 mode + 0.14 when not used (data from 
the tables). The variations in median and mode are very consistent as a function of the 
smoothness parameter, so either the mode or median is an adequate metric of the 
distribution of . There is a linear relationship between median  at any particular 
smoothness parameter and that for the climatology (sub-plots C). 

We can therefore take the ‘mean of medians’ (in the tables) as a characteristic of the 
typical behaviour of  (i.e. 50% of samples will tend to have a better goodness of fit than 
this). This value ranges between around 5.0 and 7.5 if the full correlation information is 
used, and from around 2.6 to 5.0 if it is not used: the range of values is approximately the 
same in both, with the inclusion of the full information giving a bias of around 2.5 in  
relative to ignoring it. 

The value of  does not include uncertainty in the reference dataset, as this is unknown. If 
we assume this to be equal to the parameter uncertainty of the test dataset, we can 
consider  as a measure of the number of standard deviations between the reference and 
test datasets. Clearly taking the full correlation information (especially when correlation 
coefficients are high) will increase . In making choices about an appropriate value of the 
smoothness parameter and whether or not to include the correlation information, we need 
to decide which is the most plausible. Our expectation in this experiment is that the test 
dataset should approximate the reference dataset to a given degree of accuracy. We 
might reasonably set a threshold for this at around =0.47719. None of the mean of 
median values for these experiments fall within that limit. If we include the full correlation 
information, none of the test datasets appear to match the reference to within this 
threshold by a factor of at least 10, i.e. the ‘best’ match obtained (smoothness parameter 
0.5) when using the full correlation information is around 10 times worse than we would 
expect. When not using the full correlation information, the ‘best’ match is around 5 times 
poorer than we would expect. This suggests that, even in this ‘best’ case, we are under-
estimating the standard error by a factor of around 5.0. For the climatology, this factor is 
around 10.  

32.4.5 Discussion and Conclusions 

The results in section 5.4.1 suggest that the estimate of the mean parameter values is not 
greatly impacted by the smoothness parameter (over a range 0.5 to 1.0, 1.0 being a ‘flat’ 
average, i.e. a climatology). In analysing the standard error (SE) terms in section 5.4.2, we 
note a very strong relationship between the SE estimated using different values of the 
smoothness parameter.  The main effect of varying the parameter is to simply vary the 
slope of the relationship, i.e. we can simply scale the SE estimates derived for any value 
of smoothness parameter to obtain those for any other.  

                                            
19 The median is the point at which 0.5 of the epsilon values fall below and 0.5 above. Approximating this in 

a Normal distribution, the integral of the distribution (erf) is 0.5 at 0.477 standard deviations from the mean, 

so we would, in a Normal distribution, expect 0.5 of the values to lie within +/-0.477 standard deviations. 

   

e

   

e

   

e

   

e

   

e

   

e

   

e

   

e

   

e



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 256 of 313 

Values of the correlation coefficients estimated between the various model parameters are 
analysed in section 5.4.3. These are seen to be predominantly high (positive or negative). 
Whilst the value of the smoothness parameter used to estimate them does not greatly 
change the values, the correlation terms are seen to be rather noisy spatially and 
temporally. This is sufficient evidence that they are not reliable estimates, and that 
definition of the prior would better proceed ignoring these terms. This will have the impact 
of increasing the uncertainty associated with the prior estimate, so fits in with our 
philosophy of providing a conservative estimate. 

In section 5.4.4, the cross-validation experiment, we see consistent behaviour as a 
function of the smoothness parameters, i.e. we can accurately predict the value of the 
match between the test and reference datasets from one smoothness parameter from the 
values obtained from a climatology, simply by a scaling factor. The main conclusions from 
this experiment are that to achieve a match between the test dataset and the reference 
data, the standard error estimates need to be multiplied by a factor of 10 (assuming that a 
climatology is used, and the correlation terms are ignored). Although in practice the 
climatology will make use of data from all years (and therefore is likely be a better 
prediction of the 2005 parameters than that using independent data here) applying a gross 
scaling factor of 10 to all standard error estimates would seem to be reasonable step to 
provide conservative prior estimates of the parameters. Indeed, to make this a truly 
conservative estimate, we should inflate the uncertainties by a factor larger than this.  

In conclusion, we choose to develop a climatology product in this work to use as a prior 
estimate of the model parameters. This is a straight mean of the model parameters for a 
particular (8-day) time step. As we do not have great confidence in the correlation 
information produced in the estimate, we choose to ignore that and only characterise 
terms for the leading diagonal of the prior uncertainty matrix. Further, we believe the 
estimates of standard error produced in the processing to be under-estimates of the true 
uncertainties by a factor of around 10.0, as so scale all standard error estimates by 10.0 to 
give the prior uncertainty. 

When used to produce the globAlbedo product, these uncertainty estimates should be 
further inflated (this will be implemented as a constant scaling  and a constant offset 

term  in the computer implementation) to guarantee that only a conservative prior 

estimate is used. 

32.5 Snow 

As described above, the prior parameter estimate is produced for two scenarios: (i) snow 
free; and (ii) only snow. This means that two sets of priors will be stored and need to be 
accessible to the algorithm. A decision will be made on which to use in processing (and 
which set of samples to use) depending on the snow state of any particular observation. In 
practice this means that the algorithm is run twice: once for snow pixels and once for non-
snow pixels, using appropriate priors and data for each. An additional advantage of this 
scheme is that, should a new snow albedo algorithm be defined at some later stage, the 
snow product can simply be replaced by this. Both datasets will record the time (in days) 
from the current observation to the closest snow or non-snow sample, appropriately. This 
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will facilitate the production of a merged dataset, which will use the snow observation if the 
closest sample is flagged snow and the non-snow dataset otherwise. 

It should be noted that the snow flags in the MODIS BRDF/albedo product are not entirely 
reliable. When a ‘snow free’ dataset is produced, it still can have a significant number of 
pixels that are clearly snow-contaminated. An example of this is presented for tile h18v04 
in figure 3720, with associated uncertainty information (scaled by the factor of 10 
suggested above) shown in figure 38. 

                                            
20 N.B. This is the product after stage 2 processing, described below, but the same principles apply. 
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Figure 32-19. MODIS climatology VIS ‘snow free’ bihemispherical reflectance (white 
sky albedo) for  (DOY 009, 041, 105 on RGB) scaled [0.016:0.128] 

 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 259 of 313 

 

Figure 32-20. MODIS climatology VIS ‘snow free’ uncertainty in bihemispherical 
reflectance (white sky albedo) for  (DOY 009, 041, 105 on RGB) scaled [0.000:0.065] 

Even though the product is supposed to be a summary of only snow-free observations, it 
is clear that in mountainous regions (such as the Alps and Pyrenees) the prior is 
dominated by snow observations. The highest values of these have a (white sky) albedo 
of greater than 0.128, although many values in valleys have lower albedo. Thus, the 
supposedly snow free prior is inevitably contaminated to a certain extent by snow 
observations. This is generally in areas of permanent snow however: if no ‘true’ snow free 
observation has ever been obtained (because it has been snow covered for the whole of 
the MODIS archive) there can be no straightforward estimate of the snow free albedo.  
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Where the ‘snow free’ product has been contaminated by snow pixels, as in this example, 
we can note that the uncertainty (figure 38) is always high (>0.061 here) so if a ‘true’ 
snow-free pixel happened to be observed, the influence of the prior would be particularly 
weak in these areas.  

32.6 Scaling and gap filling of the prior 

The first stage of generating the prior estimates is described above. MODIS estimates of 
albedo model parameters are assigned a relative weight according to their QA value, then 
the weighted mean over all years, for a particular sample day, is assigned to the 
climatology. The standard error of each parameter estimate is calculated, and then scaled 
by a factor of 10 to put it in line with a conservative estimate of expectations of true 
uncertainty. 

In stage 2, we attempt to gap-fill the prior estimate and reduce its resolution to match that 
of the globAlbedo product (1 km). The gap filling is achieved by setting each parameter 
value to a weighted mean of all stage 1 processed data. The time-weighting used is a 

Laplace distribution function (see above) with a value of  of 11.54 days (i.e. the same as 
assumed for regularisation above). A further weighting is applied conditioned by the 
weighted number of samples used in each parameter estimate. The n-sample-weighted 
mean is then calculated over groups of 2x2 pixels so that the resulting data product is at 
the required 1 km resolution (in the projection of the MODIS grid – see figure 22). 

This produces a slightly smoother (in time) version of the model parameters. The 
weighting of a sample 8 days distant is 0.5, but since the MODIS product uses overlapping 
16 days windows, there will in any case be some correlation between samples this far 
apart. It has the advantage of gap filling the prior estimate. Note that where this does 
occur, it implies that there has never been a MODIS estimate of the model parameters 
(other than a filler value) at any time in the MODIS archive, for that particular DOY at that 
location.  

The stage 2 uncertainty estimate at the original 500 m resolution is the square root of the 
n-sample-weighted parameter variances (simply, a weighted mean standard error). When 
applying the spatial scaling, we sum the total variance over all 4 samples (i.e. do not 
divide the variance by the number of samples). This is liable to produce a factor of 2 
increase in the standard error estimate, but was implemented to provide a conservative 
estimate of parameter uncertainty. This suggests that a scale factor of 5 should be applied 
to the stage 2 uncertainty estimates, rather than the factor of 10 for stage 1 results, but 
this would ideally benefit from further analysis. A factor of 5 has been applied to all stage 2 
standard error results presented here. 

Figure 39 shows some typical results of stage 1 processing for DOY 185. For most areas, 
there will be some parameter estimate, because, as noted, there is only a gap if there has 
never been a MODIS estimate (of QA0-3) for that pixel on the DOY. A large part of tile 
h25v06 is missing, as this is most likely covered by snow and/or permanent cloud at this 
time of year. Figure 40 shows the uncertainty associated with that estimate (incorporating 
the factor of 10 scaling discussed above).   
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A. DOY 185, tile h18v04 

 

DOY 185, tile h19v08 

 

C. DOY 185, tile h22v02 

 

DOY 185, tile h25v06 

Figure 32-21. MODIS-derived priors for DOY 185 for the 4 test areas after stage 1 
processing. The images shown are for model parameter f0, i.e. VIS Isotropic 

parameter. All images scaled 0:0.15. Black pixels are have no data. 
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A. DOY 185, tile h18v04 

 

DOY 185, tile h19v08 

 

C. DOY 185, tile h22v02 

 

DOY 185, tile h25v06 

Figure 32-22. MODIS-derived standard error in priors for DOY 185 for the 4 test 
areas after stage 1 processing. The images shown are for standard error model 

parameter f0, i.e. VIS Isotropic parameter. All images scaled 0:0.075. Black pixels are 
have no data. 
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A. DOY 185, tile h18v04 

 

DOY 185, tile h19v08 

 

C. DOY 185, tile h22v02 

 

DOY 185, tile h25v06 

Figure 32-23. MODIS-derived priors for DOY 185 for the 4 test areas after stage 2 
processing. The images shown are for model parameter f0, i.e. VIS Isotropic 

parameter. All images scaled 0:0.15. Black pixels are have no data. 
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A. DOY 185, tile h18v04 

 

DOY 185, tile h19v08 

 

C. DOY 185, tile h22v02 

 

DOY 185, tile h25v06 

Figure 32-24. MODIS-derived standard error in priors for DOY 185 for the 4 test 
areas after stage 2 processing. The images shown are for standard error in model 

parameter f0, i.e. VIS Isotropic parameter. All images scaled 0:0.075. Black pixels are 
have no data. 
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A. DOY 185, tile h18v04 

 

DOY 185, tile h19v08 

 

C. DOY 185, tile h22v02 

 

DOY 185, tile h25v06 

Figure 32-25. MODIS-derived priors for DOY 185 for the 4 test areas after stage 1 (on 
blue) and 2 (or red and green) processing. The images shown are for model 

parameter f0, i.e. VIS Isotropic parameter. All images scaled 0:0.15. Black pixels are 
have no data. 
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The uncertainty images21 are scaled so that their maximum value is half of that used to 
scale the parameters (0.075 and 0.15 respectively).  Thus, where the pixel values are 
approximately the same brightness, the uncertainty estimate is around 50% of the 
parameter value. High uncertainty values are most noticeable in much of tiles h19v08 and 
h25v06 as these have significant snow and high cloud cover issues. 

Figure 40 shows the mean parameter estimates after stage 2 processing. Of particular 
note is the fact that an estimate of albedo parameters is now provided for tile h25v06 
whereas this was missing in the stage 1 processing. These ‘snow free’ data clearly come 
from time periods other than that being examined here. The lower left section of tile 
h19v08 is also effectively gap-filled as well (there is clearly almost permanent cloud cover 
in that section of the image for DOY 185, shown by the lack of data in the stage 1 
processed data). Figure 41 shows the uncertainty associated with the stage 2 estimates 
(scaled by 5). Where gap filling has been undertaken, or the data were highly uncertain in 
the stage 1 processing (most of tile h25v06; the lower half of tile h19v08; and snow-
affected areas of the other tiles) the uncertainty is set high (in fact, > 0.075 for thresholded 
values here), so such data will only impact the globAlbedo result if there are no other 
sources of data. 

Figure 41 shows example mean parameter estimates for stage 1 and stage 2 processing, 
as a false colour composite. The stage 1 result is on blue, with the stage 2 result on red 
and green. Parts of the images that show saturated yellow are therefore ‘gap filled’ data 
(i.e. there were no data in the stage 1 processing results). Areas without ‘colour’ have 
undergone no change as a result of the stage 2 processing, which suggests that the mild 
temporal smoothing has not greatly affected the quality of the climatology. Non-saturated 
colours (e.g. blue in the bottom right of tile h19v08) indicate that the parameter value has 
been slightly affected by the smoothing. Blue indicates a decrease from stage 1 to 2, and 
yellow an increase. These non-saturated colour only seem to appear in areas of the data 
that are in nay case rather noisy and uncertain. 

32.7 Final gap filling 

Even after stage 2 processing there will be some land pixels that have no parameter value 
associated with them. Overall (i.e. combining snow and no-snow datasets) these should 
be rather small in number, as their presence means that there has never been a MODIS 
BRDF/albedo parameter estimate for that pixel at any time over the MODIS era (i.e. on 
any day). If a pixel for a specific date has no parameter value, then that same pixel will 
have no parameter for any date. 

This problem is most likely to occur in areas of essentially permanent snow, where no 
‘snow free’ parameter value can be assigned. Alternatively, it could result from variations 
in the specifications of land masks between the MODIS data and subsequent processing 
of globAlbedo products. In any case, the processing chain must be able to provide a ‘filler’ 
value (with a very high uncertainty attribute) for the prior if a request is made to process it. 
Such a filler would, of necessity be rather arbitrary and data output QA should be flagged 
to indicate that such a value has been used.  

                                            
21 N.B. with the factor of 10 applied to stage 1 results and 5 to those from stage 2.  



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 267 of 313 

One obvious solution would be to use some land cover average value (for instance, a local 
land cover average per tile). The danger of this is a reliance on land cover products that 
the product otherwise has no dependence on.   

In the ‘snow’ prior, there will clearly be a large number of pixels that have never 
experienced snow. In such cases, the use of a snow prior is rather meaningless, although 
the processing system should allow for such a possibility.   

33 Algorithm Overview 

33.1 General Overview of Scheme 

The task is to provide estimates of land surface albedo as a gridded dataset, globally (for 
the land surface) at an 8-day sampling step, at a 1 km spatial resolution. The data to drive 
the estimation are: (i) satellite observations from European sensors; (ii) a decade of 
estimates of parameters relating to albedo derived from MODIS observations (Wanner et 
al. 1997; Justice et al., 1998; Schaaf et al., 2002).  

The scheme is split into three parts that are covered in the following three sub-sections: 

 Pre-processing 

 Optimal parameter estimation 

 Albedo estimation 

33.2 Pre-processing 

The BRDF inversion and albedo retrieval procedures described in this document are the 
last step of the GlobAlbedo processing chain. The processor receives broadband 
Lambertian equivalent reflectance as input. A series of pre-processing steps are 
performed to derive such broadband Lambertian equivalent reflectance and associated 
angular kernel values. These steps are: 

33.2.1 Pixel identification 

The GlobAlbedo Pixel Identification processor classifies each pixel to be processed 
according to a series of pixel categories, which include cloud, clear-land, clear-water and 
clear-snow. Cloudy pixels are not processed in GlobAlbedo, while land, water and snow 
pixels must be distinguished because of the particular processing steps associated to 
each surface type. In particular, water pixels must be separated from land surfaces even 
in the case of continental water bodies, as these are flagged in the final albedo product. 
Snow and snow-free surfaces will also be considered separately in the albedo product. 

33.2.2 Aerosol retrieval  

Estimates of aerosol extinction are need for the conversion from top-of-atmosphere 
measurements to surface reflectance, and for the partitioning of at-surface direct and 
diffuse irradiance fluxes required to calculate the D variable weighting e.g. the different 
kernel terms in equation 14. Aerosol optical depth (AOD) and aerosol model plus an 
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estimate of the uncertainty in AOD are derived by the Aerosol Retrieval processor from 
every data set to be processed.  

It must be noted that AOD and aerosol model are assumed to sufficiently account for the 
variability in the atmospheric conditions to calculate D, while water vapour and ozone 
column contents are needed in addition to aerosol parameters in order to retrieve the most 
accurate Lambertian equivalent reflectance. All other atmospheric constituents are just set 
to climatology values in the GlobAlbedo processing chain. This selection is justified by the 
relatively higher impact of aerosol extinction at the spectral channels of the GlobAlbedo 
instruments.  

33.2.3 Spectral directional reflectance retrieval 

Pixel classification flags and aerosol maps provided by the Pixel Identification and Aerosol 
Retrieval processors, respectively, are inputs to the SDR/BBDR processor to derive 
Lambertian equivalent reflectance from top-of-atmosphere measurements over clear-land 
and clear-snow surfaces.  

SDR retrieval in GlobAlbedo is designed to calculate pixel-wise Lambertian equivalent 
spectral reflectance plus spectrally uncorrelated uncertainties for each spectral reflectance 
value. Reflectance retrieval is performed by means of the inversion of equation 4, the 
different atmospheric parameters being provided by pre-stored look-up tables (LUTs) 
compiled with the MOMO radiative transfer code. These LUTs are searched for the 
particular viewing, illumination and atmospheric conditions of each pixel. Uncertainties in 
the instrument radiometric response and in AOD, columnar water vapour and columnar 
ozone are propagated to uncertainties in Lambertian equivalent reflectance by means of 
pre-stored gradients. Spectral D terms for albedo retrieval are also calculated from 
interpolation of the LUT.  

33.2.4 Broadband conversion 

Narrow-to-broadband conversion of Lambertian equivalent reflectance is also performed 
by the SDR/BBDR processor. As described in Section 4.4, broadband reflectance is 
calculated by means of the linear combination of directional reflectance in different 
narrowband channels. The uncertainty in broadband reflectance including the covariance 
between the three broadband spectral regions is also calculated in this process by 
assuming that the linear conversion applied to narrow band reflectance can also be 
applied for the conversion of narrowband errors to broadband errors. 

Narrow-to-broadband conversion coefficients are also used to convert from spectral to 
broadband D terms. 

33.2.5 Kernel-integral estimation 

The linear model parameter estimation requires that, if Lambertian equivalent reflectance 
data are used, the kernels are themselves weighted by the sky radiance and other 
atmospheric interaction terms (equations 13 and 14). This is estimated as part of the  
BBDR retrieval, with the new kernels are weighted according to the prevailing atmospheric 
conditions at the time of acquisition, according to the atmospheric characterisation in 
MOMO.  
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33.2.6 Data binning 

Data (a QA layer, BBDR for 3 bands, associated uncertainty (6 values), and 9 kernel 
values (three for each waveband, see 4.6.1) are projected to the MODIS sinusoidal grid22 
and ‘binned’; resampling is a nearest neighbour approach. If multiple samples exist for any 
one grid cell, multiple spatial datasets are created. 

33.3 Optimal parameter estimation 

The optimal estimation framework is fed observations (BBDR, including weighted kernel 
values, and associated uncertainty of the BBDR23) that have been resampled an equal 
area projection grid (the same grid as used by MODIS, to have consistency with a widely-
used albedo dataset).  

The data are masked by QA value, and the BBDR, uncertainty information and weighted 
kernels read for all pixels in the processing region covered. The uncertainty information (6 
values) is assigned to a full (3x3) uncertainty matrix and its inverse calculated24. In an 
initialisation step, two accumulator matrices are zeroed. These are the forward 

accumulators of section 4.6.3 for ,  and 

  

RTCO

-1R. These are a matrix of 

dimension 9x9 and a vector of 1x9 and a scalar respectively. The matrix is symmetric 
about the leading diagonal, so 46 elements must be stored.  

The accumulator storage cost then is 46+9+1=56 double precision (8 byte) elements to be 
stored every 8-days (45/year), so for processing e.g. a MODIS tile of 1200 x 1200 pixels, 
this amounts to 27.1 GB per MODIS tile-area per year, of temporary file storage (or storing 
in memory of appropriate). The first stage of processing then consists of loading data into 
these accumulators, and writing out files the time-weighted summations each 8 days. 
Each of these (45 per year) datasets, indexed  for time, then contains: 

 

 

 

and 

 

 

                                            
22 http://remotesensing.unh.edu/modis/modis.shtml 

23 Uncertainty in the kernel weightings is not conducted at present, but could be treated as model noise. 

24 An obvious alternative is to store the inverse matrix, but the impact of rounding errors on that needs to be 

assessed. 
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To calculate 
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 we also need to keep track of 
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where  is the starting time period. The 56th accumulator is for the normalisation term 

. 

After the accumulators have been calculated for time step , they are readily estimated for 

time step  by multiplying all terms by  and adding all new reflectance data that 
occur between after day  and before or on , as explained in section 4.6.3.  

After these accumulators have been calculated for some defined time period, the model 
parameter estimation can take place. This involves starting at the end of the time series 
just processed and keeping a running accumulator of the same terms as in the stored 
accumulator. When the (backward, running) accumulator has been calculated for some 
day , it is combined with the forward accumulator for day  and the a priori  constraint 
on model parameters for day . 

Thus, as the running accumulator progresses back in time from the end date of the 
processing period, the relevant file (matching location and date25) of a priori information is 
opened and read, the relevant file (matching location and date) of forward accumulator is 
opened and read, and these are combined to provide (and write out) the optimal estimate 
of the model parameters at time . 

33.4 Impact of the prior in the model parameters 

The optimal estimation framework for the parameter estimation is consistent, no matter 
what the information content of any observations. The role of the prior then is in better 
conditioning the parameter estimation. Because we have used a very conservative 
estimate of the prior, this will not unduly influence parameter estimation when the 

                                            
25 Noting that the MODIS product date structure sets a file date field as the start day of the 16 days of 

sampling, i.e. it is 8 days behind the central day of sampling, which is the convention we use in this product. 

This change in convention is inevitable, as the start sampling day does not have the same meaning in this 

product as in the MODIS product. 
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information content of the observations is high, but it will be dominant when it is low. For 
example, if no observations, or only very few observations are available, the estimate 
reduces to the climatology. Since the uncertainty on the climatology is set high, any pixels 
for which this occurs will tend to have high uncertainty. 

The formalism for this is: 

 

  

ˆ P = KTCobs

-1K + Ca

-1( )
-1

KTCobs

-1 R + Ca

-1Pa( ) 

 

with uncertainty: 

 

  

CP = KTCobs

-1 K + Ca

-1( )
-1

 

 

Interestingly, this can be shown to be equivalent to (Rogers, 2000, p.67): 

 

  

ˆ P = Pa + G R - KPa( ) 

 

and 

 

  

CP = Ca - GKCa
 

 

where we see the role of the observations as providing a departure from the prior estimate 

by the product of 

  

G = CaK
T KCaK

T + Cobs( )
-1

 and the residual between the measurement 

and that predicted from the prior, 

  

R - KPa( ). We clearly see the role of 

   

G here as a gain 

term, a measure of how much we depart from the prior prediction, given the 

measurements. We also note from these expressions that the term 

   

GKCa
 provides a 

reduction in uncertainty resulting from the measurements. We note that the gain matrix 

   

G 
is a function only of the prior uncertainty, the observation uncertainty and the linear model 
terms 

   

K. Since 

   

K are mainly functions of the angular configuration of the sampling (but 
also partly the atmospheric conditions at the time of imaging) we see the route through 
which the measurement conditions impact the parameter estimate. 

 

Information content 

Whilst the consistent statistical framework used aims to provide not only an optimal 
estimate of the BRDF model parameters but also the uncertainty on these values, it is still 
of value to any user of the data to have an appreciation of the impact of the priors on the 
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parameter estimate. This we achieve in globAlbedo through a calculation of the relative 

entropy of the posterior uncertainty 

   

CP
 and the prior uncertainty 

   

Ca
. The entropy of a 

Gaussian probability distribution function (pdf) is the logarithm of the volume occupied by 
the pdf (plus an offset). Thus, for high uncertainty, the volume is high, and the entropy is 
high. The relative entropy 

   

H then is a measure of the (logarithm of the) reduction in this 
volume achieved by the measurements.  This can be written: 

 

   

H = -
1

2
lnCpCa

-1
 

 

where 

   

·  indicates the matrix determinant. This can also be written: 

 

   

H =
1

2
lnCa

-1 -
1

2
lnCp  

 

If there is no information in the measurements (there are no measurements), then  

   

Cp = Ca

, so 

  

H = 0. The higher the value of 

   

H, the higher the information content of the 
measurements (in this case, relative to the conservative estimates of uncertainty in the 
prior). This measure will be our primary metric for passing information through to users on 
the impact of the assumed prior information on the final globAlbedo product. The entropy 
of the posterior estimate of uncertainty: 

 

   

Hp = m ln 2pe( )
1

2 +
1

2
lnCp  

 

where m=9 here, will appear in the parameter product, along with the relative entropy 

   

H 
above. In the final user albedo product, a ‘simplified’ version of  

   

H will vbe provided: 

 

  

¢ H = eH m 

 

33.5  Albedo estimation 

As noted above, albedo is not an intrinsic surface property. The information contained in 
the model parameter set, being a representation of an intrinsic surface property, is 
sufficient to allow the albedo to be estimated under any illumination conditions, and many 
users will want to make use of this ability in calculating the dynamics of albedo or 
validating the product. However, many other users will simply want some consistent 
representation of albedo (under some defined illumination conditions), so a filtered dataset 
will be output as the ‘albedo product’ for globAlbedo. This will include black sky albedo (at 
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an average solar zenith angle) and white sky albedo at all three bands, along with 
uncertainty (standard deviation for each value), along with associated information on 
fAPAR, land cover type etc. The general format and contents are defined in the Technical 
Specification document, but relavant information will be re-iterated here. 
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34 Algorithm Description  

34.1 Introduction  

This section describes in detail the algorithm to estimate BRF model parameters and 
albedo from ‘observations’ of BBDR. 

34.1.1 Input data 

The assumed inputs are: 
1. A set of prior estimates of the model parameters 

 , the a priori estimate of BRF model parameters, over some 

set of locations , for day of year ( ), and contain: 

a. 9 channels of , ordered as band 0 (VIS) , band 0 , band 0 , 

followed by the parameters for band 1 (NIR) and band 2 (SW). 

b. 9 channels of , ordered the same as . 

Notes: There are 45 sets of these data per , with  in 8-day steps per 
calendar year, starting at 001 and ending at 361. The  represents the central 
day of the time period that the data represent (i.e. for 16 day MODIS windows, 

 009 represents data from  001 to 016 inclusive. This corresponds to the 
MCD43 product of , i.e. the prior for  009 corresponds to MCD43 data 
for  001. These data are stored in MODIS tiles for convenience of processing. 

2. A land surface and land cover mask 

 is read to determine which pixels should be processed. There is scope 

for this mask to be dynamic (i.e. a function of ), although a static mask will be 
used in the globAlbedo processing. The mask contains (or can be used to derive) a 
bit field that is 1 for data to be processed and 0 for data not to be processed.  

The land surface mask also provides a land cover categorisation of the pixel which 
is used for a LUT to model parameter values should there be no information in the 
observations or prior estimates. The land cover associated with the closest 
observation in time is output from the dataset. 

3. A set of observations  

These come from the products BROADBAND_SDR_i where I is an index to the 
data channel number of the product. 

, , ,   representing: 

 : BBDR data in 3 wavebands (VIS, NIR, SW) for sample  at grid 

cell location , representing data for day .  
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 : the elements of the observation uncertainty matrix are stored 

and read as: , in the order . 

The full matrix  is populated upon reading, using symmetry 

relations and the inverse (also symmetric),  calculated.  

 : the values of the 3 kernels weighted for the observation 

illumination conditions, in the same order as  or  

above. The weighting scheme is defined by equation 14 and 15, for 

broadband equivalences, noting that the definition of and  is relative 

to an absorbing lower boundary. 

 : atmospheric parameters required for the treatment of 

atmospheric effects. Provided full weighted forms of  are 

provided, only the (broadband equivalent) atmospheric spherical albedo  

(one per waveband) may be required26. This is read as  and 

contains the three values for VIS, NIR and SW respectively. This term is not 

required by the default behaviour of the scheme (see notes below). 

 : QA data associated with the observations at . The default 

behaviour is to examine: (i) a snow/no snow bit field, to give  

as 1 if snow is detected, and 0 otherwise; (ii) a process/no process bit field 

(being a summary of cloud/shadow etc. detections), giving  

as 1 if the pixel is a valid candidate for processing and 0 otherwise. More 

subtle information, using different thresholds can be processed from the QA 

data if required (e.g. threshold on AOT or SZA). 

Notes: Information about which sensor the data were measured by are contained in 
Metadata in the file. Although this information is not directly used, it will be passed 
through to the output file metadata, indicating which sensors were used in 
processing. It may be appropriate to store (and therefore read) the elements of the 
inverse observation uncertainty matrix, although further testing of the impacts of 
quantisation rounding errors on this need to be performed before a final decision.  

For a full treatment of atmospheric effects, a multiple interaction term is required, 

being the product of the (broadband equivalent) atmospheric spherical albedo  

and the difference between (unweighted) bihemispherical and weighted 

                                            
26 If the atmospheric weighting were to be performed in the optimisation code, we would need access to 

,  and the two Nsky weighted kernel integrals. 
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bidirectional reflectance (equation 9a). To achieve this, a second iteration of the 
optimisation scheme is required, where the input Lambertian equivalent reflectance 

data are multiplied by the term  prior to further processing. 

The terms  are simply those available as . The terms  are 

the bihemispherical integral of the kernels, given in Table 4-1 (final row). This is 
implemented in the scheme, and its impact will be investigated, but is not part of the 
core design of the algorithm as the first pass treatment of atmospheric effects is 
very likely to be sufficient. 

34.1.2 Output data 

34.1.2.1 Model parameter estimates 

The initial ‘full’ model output is in the product BROADBAND_Kernels_i where i is and 
index to the appropriate data channel. Two versions of the product are generated, where 
the index is prefixed by either CLEAR or SNOW. These versions are estimates of the 
model parameters for non-snow- and snow-flagged data inputs respectively. The detail of 
each product is identical, so we can refer to a single ‘product’ below. 

This product can be used to estimate broadband albedo in three spectral channels under 
any viewing and illumination conditions for which the models are valid (by appropriate 
weighting of kernels). These products are necessary to calculate the GlobAlbedo final 
product set (below). It is envisaged that these products will be useful to the scientific 
community in their own right for more detailed investigations into albedo, or for validation 
exercises under known conditions. Formally, this is an intermediate (temporary) product 
however (GlobAlbedo, 2010). The GlobAlbedo products are stored in NetCDF format files. 

The primary data product is linear kernel model parameter estimates at 1 km spatial 
resolution at global land locations defined on a sinusoidal grid (SIN) (the same as MODIS 
products use). 

The spectral coverage is: 
 Visible/photosynthetically active band: Vis/PAR (0.3–0.7 µm) 
 Near infrared band: NIR (0.7–3.0 µm) 
 Shortwave band: SW (0.3–3.0 µm) 

The temporal coverage is: 
 Fully covering the time period: 1995-2010 

The time resolution of the products is 8-day, with 45 samples per calendar year using 
samples centred around DOY 001, 009, etc.. 

In addition to the 9 model spectral parameters, a full (45 element, this T9, the triangle 
number of 9) uncertainty matrix is available per pixel.  

A QA field is output. This contains the following information: 
o Number of days since most recent sample (0 = sample on central DOY) 

o Land/Sea/Inland Water/Coastal Mask (model values available for all Land pixels) 
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o A measure of the information content of the a posteriori data distribution relative to 
the a priori, the relative entropy, is calculated to monitor the impact of the 
observations in determining the model parameters (specifically, the SW white sky 
albedo here). 

o Quality metric quantised and summarised from the uncertainty information (square 
root of determinant of variance/covariance matrix) 

o The (time weighted) number of samples used in processing. 

o Coding of which sensors contributed observations. 

The target accuracy of the product is: 
 BHRiso better than 0.005 absolute or 10% relative 
 DHR better than 0.01 absolute or 20% relative 

34.1.2.2 Albedo standard product 

The primary product of GlobAlbedo is the BB Albedo (under given illumination conditions) 
and associated information for the prevailing snow/no snow conditions. Full details of the 
output formats and contents are given in the GlobAlbedo Technical Specifgications 
document (GlobAlbedo, 2010). 

This product takes as input BROADBAND_Kernels_i  (above) for snow and no snow 
conditions. A decision on whether a snow or no snow dataset is used in the final output 
product is made based on the QA data (the (time weighted) number of samples used in 
processing N). Originally, it was intended that the QA information on the number of days 
since last snow or no-snow sample would be used for the merging criterion, but this 
proved to be overly sensitive to snow detections from the sensors. With this criterion then, 
the final ‘merge’ product does not have a binary snow flag, but rather the proportion 
Nsnow/(Nsnow+Nno snow). This can be interpreted as a form of snow probability, providing the 
weight of evidence of there being snow for a particular time/space sample. 

The primary data outputs are three waveband estimates of: 

 
 White-sky albedo - Bi-hemispherical reflectance under isotropic illumination 

(BHRiso) 
 Black-sky albedo - Directional-hemispherical reflectance (DHR) - at solar noon. 

 
The white sky albedo for a particular band is calculated from the model parameters using 
the coefficients of table 4-1. The black sky albedo weighting is stored as a LUT of values 
as a function the solar zenith at solar noon. The final product computer code then needs 
access to an estimate of this angle for each pixel for the given DOY. 
Most details of the product are the same as above, with the following exceptions: 

o The time resolution of the products is 8-day, calendar-monthly, seasonal and 
annual. 

o The spatial resolution is1 km, 5 km, 60 km 

o The products are available in the following map projections: Plate-Carrée grid and 
MODIS SIN grid. 
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As above, quantitative uncertainty estimates (standard error estimates) are provided per 
pixel for both Black-sky and White-sky albedo for each waveband. Note that uncertainty 
correlation terms are not output in this product, so only 9 uncertainty terms are required. In 
addition, the fAPAR for isotropic illumination are calculated via a LUT based on the albedo 
values, with associated uncertainty values.   

Further, the NDVI is calculated from WSA and output (no uncertainty value, since this is a 
non-linear transform) based on the white sky albedo VIS and NIR channels. 

34.1.2.3 Sea-ice albedo product 

While the albedo standard product provides the various albedo quantities for clear-land or 
snow/ice-covered land pixels, a special albedo product for sea-ice pixels has been 
developed within the DUE GlobAlbedo Evolution activities. The basic concepts of the 
albedo derivation over sea-ice are the same as described in this ATBD. However, there 
are a few important deviations in the processing sequence, which will be briefly outlined 
below. A detailed description of the GlobAlbedo Evolution concepts is given in GlobAlbedo 
(2012).  

 Level 1b  BBDR processing: 

The algorithms applied are basically the same as used for the standard albedo 
product. However, the main difference and mandatory requirement is that both 
MERIS and AATSR data have to be used as simultaneous inputs to derive a 
reliable sea-ice flag for each pixel. As no ‘prior’ information is used in this approach, 
this means in return that the sea-ice albedo retrieval is possible for regions where 
overlapping MERIS/AATSR data are available. Algorithms which allow to derive a 
reliable sea-ice flag from MERIS-only L1b data (e.g. learning algorithms which 
provide a ‘guess’ of a MERIS reflectance in the Infrared) are currently being 
developed. This would ultimately improve this approach for sea-ice albedo retrieval, 
i.e., the outer parts of the MERIS swath (wider compared to the AATSR swath) 
could be considered as well.  

To improve the quality of the MERIS/AATSR co-registration, a new technique has 
been developed (Fisher and Muller, 2012) and integrated in the L1b BBDR 
processing chain.  

The BBDR intermediate product contains BBDR retrievals for sea-ice pixels only. 
Clear or snow-covered land pixels from the standard retrieval are masked out. This 
technique is described in detail in document Section E: ATBD - ATSR to MERIS 
Co-registration. 

 Projection, resolution, and tiles: 

As the sea-ice albedo shall be computed for polar latitudes, the BBDR intermediate 
product is re-projected onto a polar stereographic grid with a horizontal resolution of 
1km. To keep the size of the single products in a reasonable range, the circumpolar 
region between 70 and 90°N is split into four ‘quadrants’, each of them covering a 
longitude range of 90°: ‘180W_90W’, ‘90W_0’, ‘0_90E’, and ‘90E_180E’.  

 BBDR  BRDF  Albedo processing: 
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In opposite to the standard albedo processing, no prior information is used for the 
derivation of sea-ice albedos,  

In opposite to the features over land which contribute to land surface albedo, the 
sea-ice may change in space (drift) and time (grow/decay) much faster. Therefore, 
it is not possible to use the same ‘wings’ concept as for the standard product. More 
detailed investigations of the temporal/spatial changes of sea-ice patterns are 
required. Very likely, the time window used for the accumulation/inversion 
procedure should not exceed a few days. 

The further processing from BBDR to final albedos is done separately on the 4 
‘quadrant’ tiles mentioned above (Figure 6-1). 

 

 

 

Figure 34-1. Polar ‘quadrant tiles’ used in GlobAlbedo sea-ice albedo computation. 
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34.2 A Data Class and methods for optimal estimation 

The description of the whole algorithm can be simplified by considering the requirements 
of a set of data holding and processing classes/methods. The core of this is the data 
class. The purpose of this class is to store and process the observational and model data. 
As we shall see some operations are most efficiently carried out using data from some set 
of locations at the same time, whereas others may be ‘per location’ (‘per pixel’) operations. 
We therefore require out data class to hold and process sample values for multiple 
locations (assumed on a raster grid). The class description in this ATBD is not a full 
description, rather it is intended as a guide for implementation. 

The Data Class  needs two dimensional, three dimensional and four dimensional 
datasets, although these latter (matrices) are symmetric and require efficient storage. The 
class should store and provide access to: 

 ‘Meta’ data 

o The geographic extent and pixel spacing of the samples, projection 

information etc. This is not altered by the processing, but is required to be 

carried through. 

o nk : The number of kernels (3 by default) 

o nb : The number of wavebands (3 by default) 

o nc, nr : The number of rows and columns of the spatial datasets (likely to 

be 1200 x 1200 if a full MODIS tile to be processed) 

o nmd : the number of matrix datasets stored (assumed square and all of the 

same dimensions) 

o mvd : : the number of vector datasets stored (this can provide storage for any 

scale spatial datasets as well) 

o nindex : the number of elements in the indexing for the matrices. The full 

matrix representations are nk x nb, structured as band 1 kernel 1, band 1 

kernel 2, band 1 kernel 3, band 2 kernel 1 … Here, nindex  = 

 which will by default be 45. 

 A spatial dataset of dimensions (nd,nr,nc,nindex ): 

o MData :  spatial elements of the matrix (e.g. ), 

organised as MData (1:nmd,1:nr,1:nc,1:index) 

o VData :  spatial elements organised as VData(1:nvd,1:nr,1:nc) 
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o NData :  spatial elements organised as NData(1:nvd,1:nr,1:nc): 

the weighted number of samples (floating point) associated with VData . 

o Mask : a binary (or byte) mask of dimensions  that is set to 1 if there 

are valid data at that location. 

 Public Methods: 

o Allocate / deallocate  the MData, VData  and Mask  arrays 

o Copy : copy all elements from one Data Class  instance to another (this 

might be an initialisation of a new instance as well). 

o Mzero, Vzero  (zero the MData/VData  arrays). Vzero  should zero NData  

as well. 

o Matrix : return the full matrix representation for a given row, column and 

dataset 

o Scale(s) : multiply all elements of MData, VData and NData  for which 

mask is 1 by the factor s . 

o Accumulate(Data Class: new ): for pixel locations where mask is 1 in 

both this and the new dataset, add the elements of new.MData to 

this.MData, new.VData to this.VData new.NData to this.NData and modify 

this.Mask  accordingly. 

o Data input/output routines, storing/returning the metadata, MData, NData, 

VData  and Mask . For metadata, Mask and NData , VData  this is 

straightforward. For MData , we want to be able to determine index as a 

function of the element index p,q; If we assume the indexing system 1-

based, setting , the total number of samples in MData  is the  

triangular number,  (i.e. 1, 3, 6, 10, 15 … or 45 here in the 

default case). From this, we can show that the index for element  is: 

 

for the upper triangular elements of the matrix. To go from index to  it is 

probably most convenient to build a LUT. 
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34.2.1 Data input 

We can consider a set of low level data input functions then that read the required 
datasets into memory and perform any masking or other operations. These are: 

34.2.1.1 Get_Observations(filename, 

writeDataFile=writeDataFile, 

landcoverMask=landcoverMask, 

window=window) 

Inputs: 

The main input for this function is the filename associated with a particular set of 
observations. An instance of a Data Class, landcoverMask  can also be input 
that should cover the same area as that to be processed here. 

An output filename may be specified, in which case a suitable filename should be 
passed through the writeDataFile  option. 

A window may be specified through a keyword or similar mechanism to specify 
some area of the image to read. The default behaviour should be to read the whole 
of an image in the filename specified. 

Other options may be appropriate. 

Outputs: 

The function should store information from the observational dataset in an instance 
of a Data Class  and return this.  

It has the possibility to write this out as arrays of Mask, MData  (  for this 

sample set) and VData  ( ) for this dataset. This only happens if 

writeDataFile  is set, but may be useful, as a ‘pre-processing stage’ may then 
be performed that stores all of the observational data as matrices. The storage 
requirement for that is 45+9+1=55 8-byte elements per pixel (1200 x 1200) = 0.59 
GB per image (in fact, slightly less as the mask  array could be stored as a single bit 
array or at most a byte array). 

Operation: 

There is one relevant observation matrix,  and one vector term  to be 

stored and operated on so  should be set to 1 and  to . Should  

be required, this can be stored in an extended VData  array, or perhaps better still, 
a new array member of the Data Class  defined to hold this. 

The mask, MData, NData  and VData  need to be allocated and zeroed. 

The Mask  is set to 1 where the SNOW  flag is zero (for Snow-free processing, and 
vice versa), the land cover mask indicates that a pixel should be processed, and 
the flag VALID  is 1 in the dataset. It is set to 2 if the pixel is a valid land sample, but 
there is no observation. 
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The term  is a symmetric matrix of dimensions  by  (9x9 

typically). The upper triangle of  is calculated for all pixels where MASK=1 

and the elements stored sequentially in MData  (according to the indexing system 
defined above).  

The vector  is of dimension . All elements of  are calculated 

for all pixels where MASK=1 and the elements stored sequentially in VData .  NData 
is set to 1 where MASK=1. 

Comments: 

Probably the most computationally-costly part of this function is the calculation of 
. The information required for further processing and for optimal estimation 

is contained within the terms  and . If the data are read from the 

image files into a Data Class instance, the arrays of  and  could be 

output for each sample, and this calculation separated from the optimal estimation 
procedure. 
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34.2.1.2 Get_Prior(filename,landcoverMask=landcoverMask,window=window) 

Inputs: 

The main input for this function is the filename associated with a particular a prior 
parameter estimate (associated with DOY and location (MODIS tile) L).  

An instance of a Data Class , landcoverMask  can also be input that should 
cover the same area as that to be processed here. 

A window may be specified through a keyword or similar mechanism to specify 
some area of the image to read. The default behaviour should be to read the whole 
of an image in the filename specified. 

Other options may be appropriate. 

Outputs: 

The function should store information from the prior dataset in an instance of a 
Data Class  and return this. 

It has the possibility to write this out as arrays of Mask , MData  and VData  (the 
diagonal elements of  all of  for this sample set) although this is probably 

not generally worthwhile. 

Operation: 

There is one relevant (prior uncertainty) matrix,  and one vector term  to 

be stored and operated on. In this case, only the diagonal elements of  are 

read in.  should still stored in the MData  representation (off-diagonal terms 

being set to zero), and  in VData .  should be set to 1 and  to .  

The mask, MData   and VData  need to be allocated and zeroed. NData  is not used 
and should be set to zero. 

The Mask is set to 1 where the land cover mask indicates that a pixel should be 
processed, and the flag VALID  is 1 in the dataset. It is set to 2 if the land cover 
mask indicates that a pixel should be processed, and the flag VALID  is 0. 

The prior information  and the leading diagonal elements of  are read in 

from file and use to calculate the leading diagonal elements of  and  which 

are stored in VData .  

Comments: 

None. 
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34.2.1.3 Get_LandCoverMask(filename, window=window) 

Inputs: 

The main input for this function is the filename associated with a particular land 
cover mask (associated with location (MODIS tile) L). The primary aim of the mask 
is to identify pixels that should be processed for the globAlbedo product. This is 
essentially all land surface pixels27. When the a priori estimate of model parameters 
fails to provide a valid set of data, the class identified in this land cover map is then 
used to provide a table look up to a default set of parameters. 

A window may be specified through a keyword or similar mechanism to specify 
some area of the image to read. The default behaviour should be to read the whole 
of an image in the filename specified. 

Other options may be appropriate. 

Outputs: 

The function should store information from the land cover dataset in an instance of 
a Data Class and return this.  

The mask information should be stored in the Mask structure.  

Operation: 

The data mask is read from filename  (possibly over a window) and returned as a 
byte array that can be stored in a Data Class Mask structure. 

Comments: 

The mask needs to have agreed coding:  

0 not land and/or no data;  

1 land and data 

2 land but no data 

etc. LC categories. 

                                            
27 This definition may need to be tightened, e.g. pixels with > 50% of the pixel covered by land or other 

definitions. 
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34.2.2 Accumulation 

34.2.2.1 Accumulate_OneStep(dt , gamma, fileNames, DOYS,  

Accumulator=Accumulator 

writeDataFile=writeDataFile, 

landcoverMask=landcoverMask, 

window=window) 

Inputs: 

The inputs to this function are:  

(i) the time step  

(ii) a scaling term, , used to calculate  (0.5 here);  

(iii) a list of Nstr  strings, giving the filenames of observational data to be added to 
the accumulator;  

(iv) the DOYs associated with the Nstr  strings 

(v) if defined, an initial Accumulator.  

A window may be specified through a keyword or similar mechanism to specify 
some area of the image to read. The default behaviour should be to read the whole 
of an image in the filename specified. 

An output data filename writeDataFile  may be specified. A land cover mask file 
may be specified. Other options may be appropriate. 

Outputs: 

The function should return a Data Class  of the updated accumulator. 

If no data are to be accumulated, an error code should be returned (non-fatal). 

Operation: 

The purpose of this function is take an accumulator defined for time period  and 
update its contents so that it becomes the accumulator for time period  (where 

 may be positive (for forward steps) or negative (for the reverse sweep). This 
involves: 

 Initialiase an index for which dataset to process, thisImage  to 1 (for a 1-

based counting system) 

o If the total number of datasets, Nstr  is zero or negative, return an 

error code (non-fatal). 

 If the accumulator is defined, scale all matrix/vector elements by . 

Accumulator.scale( ) 

   

dt

   

g

  

exp -dt g( )

   

t

  

t +dt

   

dt

  

exp -dt g( )

  

exp -dt g( )



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 287 of 313 

 If the accumulator is not defined, initialise and zero it. To do this, we need to 

know the data dimensions, so the first of the filenames, filenames[1] might 

be read: 

 Accumulator= Get_Observations(filenames[thisImage], 

landcoverMask=landcoverMask, 

window=window) 

 Scale these data by  

 Where DOY  is the DOY associated with dataset  index thisImage   
o increment thisImage  by one. 

 The pixel dimensions (number of rows, columns) of landcoverMask  (if it 

exists) and Accumulator  should be the same. 

 Loop over thisImage  until and including when it equals Nstr  : 

o Read the next dataset: 

Accumulant = Get_Observations(filenames[thisImage], 

landcoverMask=landcoverMask, 

window=window) 

 Scale these data by  

Accumulant.scale(
 

 Where DOY  is the DOY associated with dataset  index thisImage  

 Set Accumulant.NData to  where mask is 1. 

 Accumulate (i.e. sum the matrices & vectors & update mask): 

Accumulator.accumulate(Accumulant) 

 Write the Accumulator to a file if writeDataFile  is specified: 

Accumulator.write(writeDataFile) 

 Return the Accumulator 

Comments: 

As indicated above, to be efficient, the optimal estimation code needs to run in two 
modes: (i) an accumulation and storage mode; (ii) a parameter estimation mode. 
Once the data are read in and the relevant matrices formed in the 
Get_Observations() function, all accumulation actions can be efficiently performed 
for multiple sample locations at the same time as (with one exception) the 

  

exp - t +dt - DOY g( )

  

exp - t +dt - DOY g( )

  

exp - t +dt - DOY g( )

  

exp - t +dt - DOY g( )
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accumulations simply requires multiplication and addition which can be performed 
by vector operations in most languages.  
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34.2.2.2 Accumulate_TwoWay(startDOY, endDOY, dt, Gamma,  

34.2.2.3 filenames, DOYS, 

writeDataFileExt=writeDataFileExt, 

writeDataFileDir=writeDataFileDir, 

landcoverMaskFile=landcoverMaskFile, 

window=window) 

Inputs: 

The inputs to this function are:  

(i) the start day for the accumulators startDOY . 

(i) the end day for the accumulators endDOY . 

(ii) the time step  

(iii) a scaling term, , used to calculate  (0.5 here);  

(iv) a list of Nstr  strings, giving the filenames of observational data to be added to 
the accumulator. Note that this list should be in time order. 

(v) the DOYs associated with the Nstr  strings 

As the method requires writing (temporary) files of the accumulated matrices, some 
mechanism must be used to specify the output file names. This could, for instance 
be via using a particular directory (writeDataFileDir ) and an additional 
extrension to the input file names (writeDataFileExt ). 

A land (cover) mask (landcoverMaskFile ) may be specified, so that only land 
pixels are processed. This could be static, or different land masks could be used for 
each scene. 

A window may be specified through a keyword or similar mechanism to specify 
some area of the image to read. The default behaviour should be to read the whole 
of an image in the filename specified. 

Outputs: 

The set of names of the (reverse plus forward pass) files written out by this function 
should be returned. 

Operation: 

The purpose of this function is to calculate and store a set of Data Class data: 
metadata plus Mask, MData and VData  data, for the weighted matrices  

and  , the mask showing where valid pixels are. NData  is used to store the 

weight assigned. 

These data are stored to disk by the Data Class Write  function, and read by 
the Read  function. These datasets will be output for DOYs starting from startDOY 
up to and including endDOY , in steps of dt . The data mask needs to be read in 
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before further processing. The overall approach is a two-pass system: first DOYS 
are scanned forward in time over the required range, and (temporary files) of the 
matrices written for each output sample DOY, using the function 
Accumulate_OneStep()  to proceed between time steps. Then the process starts 
at the final day of data, takes samples from that date until the day after the final 
output sample DOY and calculates the associated matrices for those data. The 
reverse sweep sample is added to the sample for the final output sample DOY, and 
the new matrices written. Time is then stepped through backwards until the day 
after the first output sample DOY is reached in steps of dt , using the function 
Accumulate_OneStep()  as previously. 

There are several options at this point, depending on memory availability.  

First, the reverse pass matrices may be stored in memory, rather than written to 
file. These are required for subsequent processing, although they only need to be 
accessed one at a time (which is why the default behaviour should probably be to 
write the data to files). 

Second, the forward pass matrices might also be stored in memory. Again, these 
are only needed one at a time, so there is sense in writing temporary files. 

 Read the land cover mask if defined (or pass this through as a Data Class if 

that is more practical). At present we assume that this is static, i.e. there is a 

single mask for all pixels to be accumulated. 

o landcoverMask= Get_LandCoverMask(landcoverMaskFile, 

window=window) 

 Initialise a variable prevDOY to the first DOY in the list of filenames . 

 Initialise FwdAccumulator to NULL (or equivalent mechanism to get 

Accumulate_OneStep()  to realise that it does not exist and must be 

created). 

 Loop over DOY  from startDOY to endDOY in steps of dt . 

o Generate a list of filenames of files (theseFiles ) required for 

forward processing of matrix data for DOY  (i.e. those in the list that go 

from prevDOY to DOY , inclusive), and an associated list of DOYS 

(theseDOYS ). The ordering of these files is not important. 

o Generate a filename writeDataFile , from the DOY for which this 

sample is, and information in writeDataFileExt and 

writeDataFileDir and the fact that this is a fwd 

sample . 

 Call FwdAccumulator=Accumulate_OneStep(dt,gamma, 

theseFiles,theseDOYS,Accumulator=FwdAccumulator, 
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writeDataFile=writeDataFile, 

landcoverMask=landcoverMask,window=window) .  

This will write a data file with the forward (weighted) cumulative 
matrices, reference to DOY . 

 Update prevDOY  to DOY+1 . 

 End loop 

Note that the current FwdAccumulator is passed on to the next iteration of 
the loop. 

 Initialise a variable prevDOY to the last DOY in the list of filenames . 

 Initialise RevAccumulator to NULL (or equivalent mechanism to get 

Accumulate_OneStep()  to realise that it does not exist and must be 

created). Alternatively, this could be a zeroed copy of FwdAccumulator . 

 Loop over DOY  from endDOY to startDOY in steps of -dt . 

o Generate a list of filenames of files (theseFiles ) required for 

reverse processing of matrix data for DOY  (i.e. those in the list that go 

from DOY+1  to prevDOY  inclusive), and an associated list of DOYS 

(theseDOYS ). The ordering of these files is not important. 

o Generate a filename writeDataFile , from the DOY for which this 

sample is, and information in writeDataFileExt and 

writeDataFileDir and the fact that this will be from both fwd and 

reverse samples.  

 Call RevAccumulator=Accumulate_OneStep(dt,gamma, 

theseFiles,theseDOYS,Accumulator=RevAccumulator, 

landcoverMask=landcoverMask,window=window) .  

This will generate RevAccumulator with the reverse (weighted) 
cumulative matrices, reference to DOY+1 . Note that there is little point 
calling the writeDataFile option. 

 Open the Fwd accumulator file for DOY . And store information in 

FwdAccumulator.  

 Add the results from RevAccumulator to this (using e.g. 

FwdAccumulator.Accumulate(RevAccumulator) . 

 Normalise FwdAccumulator by FwdAccumulator.NData . 

 Write the new FwdAccumulator  to the file writeDataFile . storing 

this filename in a list writeDataFileList . 
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 Update prevDOY  to DOY . 

 Return writeDataFileList . 
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34.2.2.4 Parameter_estimate(startDOY ,, endDOY, dt, PriorWeight,  

PriorFilenames,  

ObsDataFileList, 

writeParamFileExt=writeParamFileExt, 

writeParamFileDir=writeParamFileDir, 

window=window) 

Inputs: 

The inputs to this function are:  

(i) the start day for the accumulators startDOY . 

(ii) the end day for the accumulators endDOY . 

(iii) the time step  

(iv) a weighting term for the priors (PriorWeight ). A suggested value might be 5. 

(v) the DOYs associated with the Nstr  strings (DOYS).  

(vi) a list of Ndoys  strings, giving the filenames of prior estimates of model 
parameters. Note that this list should be in time order and that Ndoys  should 
be consistent with startDOY, endDOY  and dt . (PriorFilenames) 

(vii) a list of Ndoys  strings, giving the filenames of matrix data for the observations 
for each DOY. Note that this list should be in time order and that Ndoys  should 
be consistent with startDOY, endDOY  and dt .  (ObsDataFileList ) 

As the method requires writing (temporary) files of the accumulated matrices, some 
mechanism must be used to specify the output file names. This could, for instance 
be via using a particular directory (writeParamFileDir ) and an additional 
extension to the input file names (writeParamFileExt ). 

A window may be specified through a keyword or similar mechanism to specify 
some area of the image to read. The default behaviour should be to read the whole 
of an image in the filename specified. The window must be consistent with that 
used in other data access calls (e.g. Accumulate_TwoWay() . 

Outputs: 

The set of names of the model parameter files. 

 

Operation: 

The purpose of this function is to estimate kernel (actually, general linear) model 
parameters for a spatial dataset, for a set of sample DOYs, from startDOY  to 
endDOY inclusive, in steps of dt . The optimal parameter estimate is calculated 
from (pre-calculated and stored) weighted matrices  (MData ) and , 

(VData ) (with associated weighting terms for normalisation in NData ) and the mask 
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showing where valid pixels are (code 1 for valid data, code 2 for valid land pixel but 
no data). 

 Loop over DOY  from startDOY to endDOY in steps of dt . 

o Read the appropriate entry from ObsDataFileList  using the Data Class  

Read () function. (thisData ) 

o Read the appropriate entry from PriorFilenames  using 

Get_Prior(PriorFilename,window=window) . (thisPrior ). 

o Scale the prior uncertainty by PriorWeight : 

thisPrior.Scale(PriorWeight) .  

This performs a scaling of the terms on the leading diagonal elements of  

and  which are stored in MData  and VData .  

 Zero/create a Data Class instance to hold the results: Result   

 Identify ‘strange’ pixels:  

Category 1: These are pixels that have a 2 or 0 in thisPrior.Mask  and 1 
in thisData , i.e. they have no prior, but there are observations that we 
might use to estimate parameters. The parameters are liable to high 
uncertainty. Set Result.Mask  to 1  

Category 2: These are pixels that have a 2 in thisPrior.Mask  and 2 in 
thisData , i.e. they have no prior and no observations, although the pixel is 
flagged as a land pixel to be processed. Set Result.Mask  to 2 and do not 
process at this point. 

o Process Category 1 strange pixels:  

Loop over each pixel P  that has Mask  1 in Result : 
 If thisData.NData  is above some threshold: 

 Extract the matrix M  from MData  for pixel P . 

 Extract the vector V  from VData  for pixel P . 

 Find F  from the linear equation: M F = V  

 Store F in Result .VData for pixel P . 

 Find the inverse of M , M
-1
.  

 Store M
-1
 in Result .MData for pixel P . 

 Set Result.Mask to 1 for pixel P . 

 Otherwise set Result.Mask  to 2. 

   

C
Pr
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C
Pr
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o Add the scaled prior to the data in the observation matrices and vectors: 

thisData.Accumulate(thisPrior) 

o Process Normal  pixels:  

Loop over each pixel P  that has Mask  1 or 2 in thisData and for which 
Result.Mask  is currently zero: 

 Extract the matrix M  from MData  for pixel P . 

 Extract the vector V  from VData  for pixel P . 

 Find F  from the linear equation: M F = V  

 Store F in Result .VData for pixel P . 

 Find the inverse of M , M
-1
.  

 Store M
-1
 in Result .MData for pixel P . 

 Set Result.Mask to 1 for pixel P . 

o Write out Result  for DOY  to appropriate filename using e.g. 

writeParamFileExt and writeParamFileDir, storing the names in 

a list, writeParamFile.  

 Return the set of names of the model parameter files, writeParamFile . 

Comments: 

This function needs the code to step over each pixel and calculate matrix inverses, 
so it can be potentially slow.  

This function assumes that the data referred to in ObsDataFileList  have already 
been processed, e.g. by Accumulate_TwoWay() . 

There are many linear solvers that can be called to solve for F  from M F = V . 
Many of these do not need to explicitly compute M

-1
, but we require M

-1
 for 

uncertainty characterisation. 
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34.3 Optimal estimation framework 

Given the Data Class and methods described above we can simplify the optimal 
estimation framework to two stages. The first stage, that we might term observation 
accumulation, is shown in Error! Reference source not found., the second in Error! 

ference source not found.. 

A set of BROADBAND_SDR data are available that cover samples over some spatial set 
of pixels L , defined on a grid.  These data come from a set of sensors (here, (A)ATSR-2, 
VEGETATION, and MERIS) can cover a time period start to EndT. There may be more 
than one dataset for each day, e.g. in cases of orbital convergence and where data from 

 

Figure 34-2. Accumulator Flow diagram 
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multiple sensors are available. These data have associated pixel classification data 
declaring them to be snow and no cloud/shadow or clear and no cloud/shadow (the flags 
of interest here). These data contain information on the land surface reflectance 
(assuming the surface to be Lambertian) in 3 broad wavebands, an associated uncertainty 
matrix, and angular integrals of the BRDF model kernels conditioned for the state of the 
atmosphere at the time of imaging. The accumulator, explained in detail in section 7.2.2.2, 
reads a list of the BROADBAND_SDR data files and creates from these (for pixels flagged 
as Land in the input Land (Cover) product, a matrix and vector of the terms  and 

 respectively, every dDOY (8) days from startDOY to endDOY.  

The process has two stages: forward accumulation and reverse accumulation that could 
be preformed in parallel (if the subsequent summation is delayed).  

In the second stage (below), the vector/matrix derived for each time step from the 
observations is combined with the product of (a scalar) weight term and the prior estimate 
vector/matrix. By summing the two matrices and summing the two vectors, we can solve 
for the a posteriori parameter vector F and its associated uncertainty estimate.   

This results in a set of model parameter estimates and uncertainty/QA data for all pixels 
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Figure 34-3. Optimal Estimator Flow diagram 
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edo 

34.4.1 Overview 

Error! Reference source not found. gives an overview of the processing to infer the final 

lbedo product terms from the model parameters. In essence, this involves calculation of 
the local noon solar zenith angle, which then provides access to appropriate kernels 
weights for BSA noon albedo. These and WSA coefficients are retrieved from internal 
LUTs. From the weights, BSA and WSA are calculated for each of the three wavebands. 

34.4.2 Uncertainty 

Propagation of (assumed Gaussian) uncertainty terms in a linear model is trivial. The 
uncertainties in WSA, BSA are calculated according to equation 19b, with the vector U set 
to the particular weights used to calculate each term from the model parameters. The 
uncertainty in the Note that formally in this case, the spectral covariance terms in the 
albedo error estimates are required.  

 

Figure 34-4. Albedo Estimator Flow diagram 
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34.5 Practical considerations 

34.5.1 Data considerations  

34.5.1.1 Atmospheric effects of BBDR 

The product is designed to run with Lambertian equivalent BBDR data (and associated 
weighted kernels), in that it is able to treat the impacts of this assumption on the 
Broadband BRDF data. This is a novel aspect of the algorithm, and should have the effect 
of slightly increasing the non-isotropic model parameters over the values that would be 
obtained if the atmospheric influences were ignored. In this sense, it is a form of BRDF 
sharpening. The mechanism for doing this effectively in a single pass is solely a result of 
using linear models for the BRDF. 

Under some circumstances, it may be advantageous to run a second iteration of the 
algorithm to better account for surface-atmosphere multiple scattering, although this is not 
currently planned for the main processing. Even with this single loop, the algorithm should 
account for most of the atmospheric effects, and this is of itself an improvement on any 
existing approach. 

Should data that are corrected for non-Lambertian effects and surface-atmosphere 
interactions be used as inputs at some stage in the future, the code can proceed in its 
current form: the only change is that the non-smoothed kernels should be used as input 
with the BBDR data, rather than the atmospherically-treated versions. This implies a 
degree of ‘future-proofing’ for the code. 

34.5.1.2 (A)ATSR(-2), MERIS and VEGETATION 

The algorithm is designed to run with data from the European (A)ATSR(-2), MERIS and 
VEGETATION sensors. These sensors have disparate spectral, spectral and angular 
sampling. The conversion of all data to broadband estimates prior to processing is an 
important step in bringing together data that are spectrally different. As with the treatment 
of non-Lambertain atmospheric interactions on the inputs, the ability to achieve this 
formally only applies to linear models (though it is likely to hold as a reasonable 
approximation for non-linear models).  

Issues regarding the different spatial sampling regimes are really only partially dealt  with 
in this product: all data are gridded, and a ‘resampling’ uncertainty should be added to the 
input BBDR data. This is rather a crude mechanism, and it is not straightforward to 
estimate these uncertainties, but it is pragmatic, given the very large volume of data to be 
processed. 

For a large portion of the time period for which the product will be generated, data from all 
three sensors will be available. As discussed above however, the angular sampling 
regimes of (A)TSR(-2) and MERIS in particular are far from ideal for estimating full angular 
effects and angular integrals. We therefore expect these data sets to contribute only rather 
weakly to the information content of the final product. This will be manifested through the 
relative entropy measure that characterises the information content of the data additional 
to that of the prior estimate. The angular sampling regime of VEGETATION is similar to 
that of MODIS, although MODIS benefits from having two sensors in orbit and 
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subsequently a higher probability of cloud-free sampling. For these reasons, and to avoid 
the arbitrary switching in of a ‘backup algorithm’ when the data information content is too 
low, a prior estimate of the model parameters is used to constrain the inversions. Although 
this has been investigated in some detail, it is in fact only used to weakly constrain the 
solution. This constraint will be of particular importance prior to the launch of the first 
SPOT VEGETATION. Since the prior is only applied weakly, it is expected that the 
parameter uncertainties will be relatively high for that period. 

34.5.1.3 Forthcoming European sensors 

An additional advantage of the fact that the algorithm treats BBDR data as inputs is that it 
is very straightforward to apply exactly the same code/algorithm to data of similar spatial 
resolution from forthcoming (European or other) sensors. Of particular interest in this 
regard are PROBA-V, the planned replacement for SPOT VEGETATION, and the 
SENTINEL-3 platforms. Both of these will provide suitable data for this algorithm, and 
could be treated in an almost identical manner to the existing data streams. This is 
another example of ‘future proofing’ built into the approach. 

It is also worth mentioning that although in this product we map all data input channels to 
three broad wavebands, a similar (linear) mapping can be performed from any one band 
set to any other (with varying degrees of uncertainty, based mainly on spectral sampling). 
This means that although our system is designed primarily for three wavebands, it should 
be coded so that it could receive more (or different) channels of input data if so required. 
The same code could then be used to estimate narrow band (or different broadband) 
BRDF and spectral albedo. 

34.5.2 Numerical computation considerations 

The most computationally expensive part of the algorithm is likely to lie in: (i) the 
accumulation of information into the observation vector and matrix; (ii) estimating the 
model parameters and uncertainty. The first is because it makes use of large amounts of 
spatial data. It clearly does not make good sense to process those data a pixel at a time, 
so an approach has been developed that uses temporary files and a two-pass system to 
perform the accumulation efficiently.  

The estimate of model parameters and uncertainty, once the accumulated matrix and 
vector have been formed and the prior estimate read, can only really be applied on a pixel-
by-pixel basis.  

Although the use of the prior should regularise the matrices and avoid numerical issues 
when the data information content is low, some care needs to be taken when 
implementing this. This is particularly true if the prior is downweighted too much or the 
prior uncertainty happens to be very high.  

A function such as linsolve from umfpack28 found in MATLAB/SciPy etc. would be 
appropriate as a solver in most cases as it uses robust methods for the parameter 
estimation (that do rely on the calculation of the inverse matrix which can be prone to 

                                            
28 http://directory.fsf.org/project/umfpack/ 
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rounding errors). That said, the inverse matrix is required for the uncertainty estimates, so 
must be calculated in addition. 

It is worthwhile calculating the condition number29 C of the matrix, the ratio of the largest to 
smallest singular value in a singular value decomposition of the matrix to test if numerical 
issues are likely to occur in solving the linear system. If C is too large30 the matrix needs to 
be rank reduced, using a threshold on the singular values maintained in the filtering. 
These are standard methods. 

34.5.3 Prototyping and Verification. 

A first verification of the products generated using the prototype code was carried out 
doing a product inter-comparison with MODIS MCD43A3 complete diffuse bihemispherical 
Albedo. 

 

A B C 

D E F 

Figure 34-5. Upper row shows products for DoY 1, bottom row for DoY 233 for tile 
h18v04. Panels A and D show a false colour composite of GlobAlbedo BHR 

SW,NIR,VIS (RGB), panels B and E the BHR uncertainty in the SW scaled 0:0.1, 

                                            
29 http://mathworld.wolfram.com/ConditionNumber.html 

30 
where "too large" means roughly log(C)>=the precision of matrix entries 

(mathworld.wolfram.com). 
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panels C and F a false colour composite from MODIS MCD43A2 BHR SW,NIR,VIS 
(RGB) only full inversion and No Snow data. 
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Figure 34-6. BHR inter-comparison of GlobAlbedo, with and without the use of the 
Prior and MCD43A3, for tile h18v04 DoY = 1 
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Figure 34-7. BHR inter-comparison of GlobAlbedo, with and without the use of the 
Prior and MCD43A3, for tile h18v04 DoY = 233 

 

A B C 

Figure 34-8. Panels A shows a false colour composite of GlobAlbedo BHR 
SW,NIR,VIS (RGB), panels B the BHR uncertainty in the SW scaled 0:0.1, panels C a 

false colour composite from MODIS MCD43A2 BHR SW,NIR,VIS (RGB) only full 
inversion and No Snow data. All products are for DoY 241 tile h22v02. 
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Figure 34-9. BHR inter-comparison of GlobAlbedo, with and without the use of the 
Prior and MCD43A3, for tile h22v02 DoY = 241 
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A B C 

D E F 

Figure 34-10. Upper row shows products for DoY 1, bottom row for DoY 305 for tile 
h19v08. Panels A and D show a false colour composite of GlobAlbedo BHR 

SW,NIR,VIS (RGB), panels B and E the BHR uncertainty in the SW scaled 0:0.1, 
panels C and F a false colour composite from MODIS MCD43A2 BHR SW,NIR,VIS 

(RGB) only full inversion and  snow free data. 
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Figure 34-11. BHR inter-comparison of GlobAlbedo, with and without the use of the 
Prior and MCD43A3, for tile h19v08 DoY = 1 

 

 

 

 

 

 

 

 

 

 

 
Prior weight = 30 

 
Prior weight = 30 

 
Prior weight = 30 

 

No Prior 

 

No Prior 

 

No Prior 

h19v08 DoY=305 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 306 of 313 

Figure 34-12. BHR inter-comparison of GlobAlbedo, with and without the use of the 
Prior and MCD43A3, for tile h19v08 DoY = 305 

 

  

34.5.4 Quality Control and Diagnostics 

There is a wide range of quality control metrics that will be produced with the GlobAlbedo 
products. The main ones of these are: 

o Information on the number of days since an observation at the pixel; 

o QA information on whether a pixel is Land or not, allowing filtering for ‘data’ in the 

scene; 

o QA information on whether the model parameters and therefore albedo are arrived 

at from observations, the prior, or a filler value; 

o Data on the information content of the observations additional to that of the prior 

(i.e. the value of the observations in the parameter estimation); 

o Uncertainty matrices associated with the model parameters (also expressed as a 

quantised QA value) 

o Information on which sensors have contributed data to the parameter estimation. 

When users make use of the product they should pay keen attention to the uncertainty 
information provided. The primary information for a first filtering of the data for most users 
should probably be the quantised uncertainty information as a rough guide to overall 
uncertainty. Further, if the relative entropy is very low, the observations will have made 
little different to the result over the information contained in the prior, which is no more 
than a climatology. Finally though, the most in-depth analyses should make use of the full 
uncertainty matrix. 

34.5.5 Exception Handling 

The main exceptions likely to occur are as a result of data that are expected not being 
present, or the files being correpted, so the code needs to be made robust to this. This 
mainly implies that all file opening, read, and write operations should fully test that the 
expected result has actually happened. If a failure occurs on file i/o this should be treated 
as a fatal error. Since it is frustrating for fatal errors to occur after many hours of 
processing, these errors should be pre-checked as far as possible, as early as possible in 
the processing chain. 

Potential issues have been identified above in the case of there being land data indicated 
for a pixel, observations available, but no prior. In this case, an ‘unconstrained’ inversion 
may be attempted, but in any case such a pixel (most likely very rare) must be caught and 
identified in the QA. The same applies to pixels identified as Land, and with no prior and 
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no observations (this might help identify issues with the Land mask).  This is an example 
of a non-fatal error. 

Another non-fatal error should be flagged if the matrix condition number is too large, as 
discussed above. 

Non-fatal errors need to be passed through as flags to the QA data.  

Fatal errors should result in wrapping up whatever parts of the process might be profitably 
continued, then exiting the program. 

35 Error budget 

The target accuracy requirements identified by and agreed with the GlobAlbedo users in 
GlobAlbedo_RB_D01_v2_0 (2010) are: Albedo >0.15, 20% and for Albedo <0.15, 0.015, 
i.e. 10% relative accuracy (or 0.015, whichever is larger). 
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C D 

Figure 35-1. Top row shows products for DoY 1, bottom row for DoY 233 for tile 
h18v04. Panels A and C depict BHR uncertainty in the SW scaled 0:0.1, panels B 

and D the SW relative error, areas in green have 0-10% error. 

 

A B C 

Figure 35-2. Panels A shows a false colour composite of GlobAlbedo BHR 
SW,NIR,VIS (RGB), panel B uncertainty in the SW scaled 0:0.1, panel C the SW 

relative error, areas in green have 0-5% error, in blue 5-10% error. Products are for 
DoY=241 tile h22v02 

 

 



 

  

Title:  Algorithm Theoretical Basis Document 
 
Doc. No.  GlobAlbedo_ATBD_4-12 

 

 

Page 309 of 313 

A B C 

D E F 

Figure 35-3. Top row shows products for DoY 1, bottom row for DoY 305 for tile 
h19v08. Panels A and D depict BHR uncertainty in the SW scaled 0:0.1, panels B 
and E the SW relative error, areas in green have 0-5% error, in blue 5-10% error, 

panels C and F show the weighted number of samples. 

36 Assumptions and Limitations 

36.1 Assumptions 

The main assumptions underlying the product are presented below and discussed. 
o Assumption 1: The input BBDR data from the various European sensors provides 

an unbiased estimate of the reflectance averaged over the gridcell location and  

well-characterised uncertainties. 

This is a necessary assumption for this part of the overall approach. In practice, it 
means that these claims need to be fully investigated in the validation of the 
products, and so is not part of this section of the ATBD. One feature to highlight is 
that the current atmospheric processing takes no account of environment effects in 
considering multiple scattering between the surface and atmosphere. For many 
areas this will not be a problem at 1 km resolution, but for some surfaces with high 
contrast, such as snow/melt ponds, this will produce an over-estimate of the 
reflectance over dark areas and an under-estimate of the bright ones. 

o Assumption 2: The BRDF models used are sufficiently accurate to represent the 

BBDR of all land surfaces sampled (at the 1 km spatial resolution). 
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The wide range of experience with these linear kernel models means that there is a 
good confidence that the models are generally suitable for global monitoring of this 
kind for most cover types. The main exception to this (for the land surface) is snow, 
that has been identified as a potential problem area above. As a strategy to deal 
with this, we have two streams of albedo product: one for snow samples and one 
for ‘no snow’. Thus, although we have not identify at this stage a better model (than 
the linear kernels) to use in this framework for modelling snow BRDF in the way 
required, should such a model become available, the data might be reprocessed 
quite simply. An argument for using the current models is that, for many surfaces, 
roughness/shadowing effects and a general ‘bowl shaped’ volumetric scattering 
may in fact somewhat smooth the forward scattering peak of snow-areas. An 
argument against using these models is that the current kernels simply are not 
capable of producing a forward scattering peak.  

One particular feature that has received only little attention is the validity of these 
models over topography. Sites with large topographic influences tend not to be 
used for validation work, so there is little knowledge to guide us. 

o Assumption 3: The use of linear models throughout means that there will be no 

difference in model parameters. 

This assumption is quite fundamental to the approach taken here. It is only strictly 
true for narrow waveband estimates of model parameters. For broader wavebands, 
it is equivalent to assuming that interacting spectral terms (such as Nsky, the 
proportion of diffuse illumination and spectral variations in model parameters) can 
be treated as equivalent values constant over the waveband. In that sense, it puts 
the problem off into the atmospheric correction processing: the requirement for that 
is to calculate the correct broadband equivalent terms that will result in the correct 
equivalent broadband parameter.  

Although this is a reasonable assumption to make, and is of such great benefit to 
the processing framework with the disparate sensors used here, this is an aspect of 
the algorithm assumptions that would benefit from further investigation and a fuller 
quantification of the uncertainties involved. 

o Assumption 4: All uncertainties can be treated as Gaussian distributions. 

This is a fundamental assumption underlying the optimal estimation framework and 
the treatment of uncertainty throughout. It is usual practice in modelling of this sort, 
although it has not received any particular attention here. 

o Assumption 5: An optimal estimate of albedo is not achieved by censoring the 

model parameters. 

In the MODIS BRDF/Albedo product, model parameters are constrained so as not 
to take on negative values. This is to allow them to maintain some physical 
meaning. Viewed simply as semi-empirical ‘shapes’ though, there is less 
justification to such censoring. The downside of not censoring is that it is possible 
that negative albedo values may be predicted. In such a case however, it is likely 
that the uncertainties will be high, so the parameter distribution will in any case 
cover a large portion of positive values. More importantly, censoring of the data 
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greatly complicates the interpretation of Gaussian uncertainty values, as these 
(formally) assume uncensored data. Pixels that have negative model parameters 
are easily identified by the user and can be removed if desired. Also, the 
conditioning of the matrix by the use of a prior estimate should reduce the 
occurrence of negative parameter values, as the prior has only positive values 
(being derived from MODIS). 

36.2 Limitations 

The major limitations of the product are likely to occur for: 
o Estimating model parameters far away from the angular sampling available 

For example, at high latitudes, in Spring but even in Summer, the solar zenith angle 
at the time of the observations will tend to be quite high. This introduces several 
problems. First, the quality of the atmospheric correction is likely relatively poor, 
due to the long path length through the atmosphere and the need to treat aspects 
such as Earth curvature in scattering considerations. Second, the kernel BRDF 
models are unlikely to operate as well as high solar zenith angles as at lower 
angles. Third, at high solar zenith angles, Nsky can be quite peaked. The kernel 
BRDF models have only a weak treatment of the retro-reflection peak, so these 
impacts may become over-smoothed. In such a scenario, terms such as the white 
sky albedo become rather hard to estimate as well as the angular sampling is not 
well-distributed enough for a robust calculation of this integral. This problem should 
be mitigated by the large uncertainty in atmospheric products and BRDF model 
parameters that will be produced by these angular configurations. 

o Snow albedo, particularly relatively smooth, fresh snow 

It is acknowledged in the ATBD that there is a perceived need for an improved 
snow model and that the existing models may be insufficient. There is however 
debate around this issue, and no suitable replacement model has been 
successfully used globally in similar products. Issues regarding snow will be worse 
when the forward scattering peak is larger, which will tend to occur when the snow 
if flat and fresh (minimal surface roughness effects). 

o Estimating model parameters where no observations or prior are available 

This is clearly a difficult thing to attempt, but in trying to produce a ‘snow free’ 
albedo product we are in many cases doing just that: trying to predict the snow free 
albedo of somewhere that is always covered in snow at a particular sampling time. 
In such a case, the product will revert to the prior (and the relative entropy will be 
zero) so such cases will be flagged as potentially unreliable. The most difficult to 
treat cases occur when there are no estimates available in the prior. This should 
only happen in a small number of cases however, and those are likely to be areas 
of permanent cloud (no MODIS or other observations ever) or e.g. in trying to 
predict the snow-free albedo of an area that is permanently snow covered.   
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37 Broadband reflectance and kernel values (internal product) 

In order to derive test broadband albedo data for developing the prototype system, daily 
surface reflectance data of the MODIS instrument onboard Aqua and Terra platforms with 
500 m spatial resolution (MOD09GA) have been employed. The operational surface 
reflectance computation for bands 1 to 7, ranging from the visible blue to the short-wave 
infrared, employs several atmospheric products and corrects for atmospheric gases, 
aerosols, cirrus, and the adjacency effect (Justice et al., 1998; Vermote et al., 2002). With 
the aim of utilize only pixels with a high data quality, the quality assurance science data 
set (QA-SDS) provided with the MODIS granules has been analyzed. Only pixels which 
fulfilled the specifications of Table 11-1 and with a SZA lower than 80° have been 
preserved. 

 

Quality flag Quality setting 

Cloud state Clear 

Cloud shadow No 

Land/water Shallow ocean, land, ocean coastlines and 
lake shorelines, shallow inland water, deep 
inland water. 

Aerosol quantity Climatology, low, average, high 

Cirrus detected None 

Internal cloud algorithm No cloud 

Internal fire algorithm No fire 

MOD35 snow/ice No 

Pixel is adjacent to cloud No 

BRDF correction performed No 

Internal snow algorithm No 

Table 11-37-1 MOD09 QA flags 

Narrowband to broandband conversion was performed using the formulae provided by 
Liang (2000), as atmospheric correction produces surface spectral reflectance, under the 
assumption that the surface is a Lambertian, spectral reflectance is equal to spectral 
albedo, a similar processing is performed by the MODIS science team in the generation of 
the BRDF/Albedo generation as the conversion of spectral reflectance to spectral albedo 
is based on observations accumulated during the period of 16 days surface reflectance 
(Lucht et al., 2000). An example of the aforementioned product is shown below. 
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Figure 37-1. On the upper left corner, daily surface reflectance product derived from 
MODIS in a false color composite bands 7,2,1 RGB, on the upper right corner the 
conversion to broadband masked from clouds and snow, the Ross-Thick kernel is 
shown on the lower right corner and, the Li-Sparse reciprocal kernel on the bottom 
right. 

 

 

 


